首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fatigue crack growth properties of friction stir welded joints of 2024‐T3 aluminium alloy have been studied under constant load amplitude (increasing‐ΔK), with special emphasis on the residual stress (inverse weight function) effects on longitudinal and transverse crack growth rate predictions (Glinka's method). In general, welded joints were more resistant to longitudinally growing fatigue cracks than the parent material at threshold ΔK values, when beneficial thermal residual stresses decelerated crack growth rate, while the opposite behaviour was observed next to KC instability, basically due to monotonic fracture modes intercepting fatigue crack growth in weld microstructures. As a result, fatigue crack growth rate (FCGR) predictions were conservative at lower propagation rates and non‐conservative for faster cracks. Regarding transverse cracks, intense compressive residual stresses rendered welded plates more fatigue resistant than neat parent plate. However, once the crack tip entered the more brittle weld region substantial acceleration of FCGR occurred due to operative monotonic tensile modes of fracture, leading to non‐conservative crack growth rate predictions next to KC instability. At threshold ΔK values non‐conservative predictions values resulted from residual stress relaxation. Improvements on predicted FCGR values were strongly dependent on how the progressive plastic relaxation of the residual stress field was considered.  相似文献   

2.
Crack growth rate versus crack length curves of heavily overloaded parent material specimens and fatigue crack propagation curves of friction‐stir‐welded aluminium samples are presented. It is shown that in both cases the residual stresses have a strong effect on the crack propagation behaviour under constant and variable amplitude loading. As a simplified engineering approach, it is assumed in this paper, that in both cases residual stresses are the main and only factor influencing crack growth. Therefore fatigue crack propagation predictions are performed by adding the residual stresses to the applied loading and by neglecting the possible effects of overloading and friction stir welding on the parent material properties. For a quantitative assessment of the residual stress effects, the stress intensity factor due to residual stresses Kres is determined directly with the so‐called cut‐compliance method (incremental slitting). These measurements are particularly suited as input parameters for the software packages AFGROW and NASGRO 3.0, which are widely used for fatigue crack growth predictions under constant and variable amplitude loading. The prediction made in terms of crack propagation rates versus crack length and crack length versus cycles generally shows a good agreement with the measured values.  相似文献   

3.
The effects of various surface treatment techniques on the fatigue crack growth performance of friction stir welded 2195 aluminum alloy were investigated. The objective was to reduce fatigue crack growth rates and enhance the fatigue life of welded joints. The crack growth rates were assessed and characterized for different peening conditions at a stress ratio (R) of 0.1, and 0.7. The surface and through-thickness residual stress distribution were also investigated and presented for the various regions in the weld. Tensile residual stresses introduced during the welding process were found to become significantly compressive, particularly after laser peening. The effect of the compressive stresses was deemed responsible for increasing the resistance to fatigue crack growth of the welds. The results indicate a significant reduction in fatigue crack growth rates using laser peening compared to shot peening and native welded specimens. This reduced fatigue crack growth rate was comparable to the base unwelded material.  相似文献   

4.
The fatigue crack propagation in a friction stir‐welded sample has been simulated herein by means of two 3‐dimensional finite element method (FEM)‐based analyses. Numerical simulations of the fatigue crack propagation have been carried out by assuming a residual stress field as a starting condition. Two initial cracks, observed in the real specimen, have been assessed experimentally by performing fatigue tests on the welded sample. Hence, the same cracks have been placed in the corresponding FE model, and then a remote load with boundary conditions has been applied on the welded specimen. The material behaviour of the welded joint has been modelled by means of the Ramberg‐Osgood equation, while the non‐linear Kujawski‐Ellyin (KE) model has been adopted for the fatigue crack propagation under small‐scale yielding (SSY) conditions. Owing to the compressive nature of the residual stress field that acts on a part of the cracked regions, the crack closure phenomenon has also been considered. Then, the original version of the KE law has been modified to fully include the closure effect in the analysis. Later, the crack closure effect has also been assessed in the simulation of fatigue propagation of three cracks. Finally, an investigation of the fracture process zone (FPZ) extension as well as the cyclic plastic zone (CPZ) and monotonic plastic zone (MPZ) extensions have been assessed.  相似文献   

5.
Friction stir welding of titanium holds the promise for producing joints with microstructures and mechanical properties that are more comparable to wrought material than traditional fusion welding processes. Extensive data exist on the microstructure and static mechanical properties of titanium friction stir welds, but very little are available on the durability (fatigue) and even less on the damage tolerance (fracture toughness and fatigue crack growth). This paper presents the results of an investigation into the damage tolerance of friction stir welds made in 6 mm thick Ti‐6Al‐4V after a post‐weld heat treatment. It was found that the apparent fracture toughness was lower than the wrought base material, 7–25% depending on the crack orientation relative to the weld, but the crack growth performance (ΔK vs. da/dN) of the weld in the absence of weld‐induced residual stresses was identical to the base material.  相似文献   

6.
Evaluation of Residual Stresses During Fatigue Test in an FSW Joint   总被引:1,自引:0,他引:1  
S. Pasta  A. P. Reynolds 《Strain》2008,44(2):147-152
Abstract:  This paper shows an application of the adjusted compliance ratio method (ACR), and the on-line crack-compliance technique for determination of the effects of the residual stress during a fatigue test. The fatigue crack growth tests were carried out on a friction stir welded (FSW) joint in Ti-6Al-4V titanium alloy. On-line crack compliance enables the determination of the residual stress intensity factor in real time from a fatigue test. The ACR methodology was used to separate the residual stress effects from the crack growth rate data. Finally, the residual stress distribution of the FSW joint was found from the knowledge of the residual stress intensity factor through an integral solution. It would have to be noted that both methods are based on ratios of displacements; therefore, the practical application does not require the use of the influence functions needed for the cut-compliance method. Moreover, a specific test, which determines residual stresses, can be avoided because the effect of the same residual stresses on the crack growth is evaluated during the fatigue test. This methodology is more accurate than cut compliance because it reflects the real crack growth behaviour.  相似文献   

7.
Similar and dissimilar friction stir welded joints made from AA2124+25 % SiC and AA2024 An aluminium matrix composite (AMC) consisting of an AA2124 matrix reinforced by 25 vol.% SiC particles was used to produce similar AMC+AMC and dissimilar AMC+2024‐T3 joints by friction stir welding. When the particle reinforced composite was located on the retreating side, material mixing was less intense for dissimilar joints. Nevertheless, a higher strength has been determined for this arrangement due to a hook‐like interlocking of both materials. Tensile test and S‐N fatigue behaviour is shown to be compromised by alignment of the reinforcement particles perpendicular to loading direction already in the particle reinforced base material. Welding residual stresses were determined through the cut‐compliance method in terms of stress intensities acting at the crack tip. The underlying residual stress distribution in the un‐cracked structure was calculated by the weight function method. Longitudinal tensile residual stresses were found to be higher in the monolithic material as compared to the particle reinforced composite. This held true both for similar and within dissimilar joints. Growth behaviour of cracks crossing the joint line was described and correlated with residual stresses for similar joints.  相似文献   

8.
This paper presents some results obtained from synchrotron diffraction investigations into two somewhat related areas of interest to the fatigue community. Firstly, the influence of fatigue cycling on the distribution and magnitude of residual strains and stresses and, secondly, the residual strains and stresses engendered around a growing fatigue crack. Its main premise is that modern tools such as automated synchrotron strain scanning offer the potential for more complete insight into the distribution of residual strains and stresses and their influence on fatigue performance. The first part of the work was accomplished using friction‐stir welded (FSW) and metal‐inert gas (MIG) welded specimens. The particular interest in these specimens was obtaining detailed knowledge regarding as‐welded variation in residual stresses between specimens, the location of peak values relative to local microstructure and stress concentrations, and of their modification during fatigue cycling. Such information may indicate a route forward to the selection of welding process parameters for optimised fatigue performance. The second part of the work considered an established fatigue crack in a compact tension (CT) specimen and examined the ability of synchrotron diffraction to characterize the stresses associated with the plastic enclave around a fatigue crack. This work is of interest in the context of better knowledge of crack‐tip shielding by plasticity‐induced closure and its incorporation into life prediction methodologies.  相似文献   

9.
The present paper aims to investigate the effect of ultrasonic peening treatment on the very high cycle fatigue resistance of an AA7075 friction stir welded joint. Microscopy observation, microhardness and X‐ray diffraction measurements were carried out to characterize the treated surface of peened specimens. Fatigue crack initiation sites were investigated through scanning electron microscope, and the role of enhanced surface on fatigue resistance was analyzed. The results indicate that a sensible fatigue strength improvement can be obtained through application of ultrasonic peening treatment and that fatigue cracks can initiate from the interior of the specimen. To clarify the fatigue failure mechanism, we analyzed the microstructure characteristics, compressive residual stress profile and intermetallic inclusion distribution in the surface layers, and we discussed the capability of ultrasonic peening treatment to hinder the surface crack initiation.  相似文献   

10.
In this study, friction stir welding of Ti‐6Al‐4 V was demonstrated in 24 mm thickness material. The microstructure and mechanical properties, fatigue, fracture toughness and crack growth of these thick section friction stir welds were evaluated and compared with electron beam welds produced in the same thickness material. It was found that the friction stir welds possessed a relatively coarse lamellar alpha transformed beta microstructure because of slow cooling from above the transus temperature of the material. The electron beam welds had a fine acicular alpha structure as a result of rapid solidification. The friction stir welds possessed better ductility, fatigue life, fracture toughness and crack growth resistance than the base meal or electron beam welds. Thus, even though friction stir welding is a relatively new process, the performance benefits it offers for the fabrication of heavy gage primary structure make it a more attractive option than the more well‐established electron beam welding method.  相似文献   

11.
This study was made on a fresh variety of Al–Li base alloy to investigate the role of ageing precipitates and microstructure dimensions in the fatigue crack growth resistance. The fatigue crack growth rate was measured in three different states of the material (i.e. base metal in T8 condition, friction stir weld and laser beam weld in full‐aged condition). Metallurgical analysis showed that the base metal in T8 temper is precipitation hardened by an equivalent amount of δ′ (AL3Li), T1 (AI2CuLi) and θ′ (AI2Cu) precipitates. The friction stir weld retained the morphology of strengthening precipitate; however, coarsening of Cu containing precipitates has occurred. On the other hand, laser beam weld showed a different type of CuAl phase morphology, which is characteristic of cast metal. The results of fatigue tests confirmed that fatigue crack growth resistance largely depends on microstructural features, specifically the strengthening phases. The fatigue crack resistance was in the order of base metal > laser beam weldment > friction stir weldment. The CuAl phase played a vital role in the crack closure of the laser beam weldment, thus enhancing the fatigue life as compared with the friction stir weldment, which was evident from the plot between log of da/dN (crack growth in each cycle) and log of ΔK (stress intensity range).  相似文献   

12.
The effects of low‐plasticity burnishing (LPB) on the fatigue life of friction‐stir‐processed (FSP) Al 7075‐T6 plates were examined experimentally and numerically. Aluminum samples were taken from plates to test fatigue response in the presence of heat‐affected zone (HAZ) at different loading magnitudes. Finite element method was employed to numerically evaluate fatigue life of FSPed samples by means of the Smith–Watson–Topper (SWT) model. Through numerical analysis, the FSP and its cooling procedure were modelled on the basis of the arbitrary Lagrangian–Eulerian technique, and then, the effect of the LPB to assess fatigue response of samples was examined. Aluminum samples undergoing friction‐stir process presented lower‐fatigue life as stresses were highly concentrated within FSP regions. Involvement of LPB regained fatigue durability through compressive residual stress induced on the aluminum samples. The higher applied force over the LPB promoted compressive residual stress on the sample surface and improved fatigue life of samples. The predicted life results were found twice more in magnitude than those of experimentally obtained.  相似文献   

13.
This paper presents the macro and microscopic fractography performed on fractures from fatigue cracks through friction stir welded joints. The welds were placed under different angles in the various specimens to study the influence of the yield strength and residual stress on fatigue crack growth. As a result, different behavior was observed at the macro level, depending on the type of alloy and orientation of the weld. The variations in rotation of the crack plane raised a number of questions regarding the mode of loading, i.e. mode I or mode II. The purpose of this study was to investigate the fracture surfaces at microscopic level to find explanations for the local macro behavior. Special focus was placed on the fracture surfaces on which features were observed indicating mode II fatigue crack growth.  相似文献   

14.
Biaxial fatigue of friction stir welded stiffened panels Within the framework of the European WelAir project, cruciform specimens made from stiffening FSW overlap joints were fatigued in the DLR biaxial test rig. To resemble the loading situation of pressurized fuselage structures, proportional loading without any phase shift, but with different load ratios λ between the loading components in both directions was applied.Natural crack initiation and subsequent crack growth were governed by the stiffness gradient caused by introducing the stringer. Cracks initiated and propagated at run‐in and run‐out locations in a direction perpendicular to the weld seam. The shortest fatigue life was observed for uniaxial loading in welding direction (λ = 0). An additional stress component perpendicular to the joint line (λ > 0) resulted in a higher number of cycles to failure. Similar to single stringer panels, increasing the load ratio also increased the number of cycles to failure for FSW clip‐stringer structural members, but additionally gives a different location of the fatal crack.  相似文献   

15.
Behavior of fatigue crack which was propagated at some representative areas in the friction stir welded (FSWed) joint of aluminum alloy 6063-T5 was studied. By extracting the T–L orientation specimens so that the loading axis on the fatigue test and the crack propagation direction were transverse and longitudinal to the welding direction, respectively, the crack propagation tests were carried out for both the as-welded and post-weld heat treated (PWHTed) FSWs at room temperature and 200 °C. The experiments showed that the fatigue crack propagation (FCP) rates were sensitive to the propagating location, the test temperature, and the PWHT condition as well. It was also found that the different FCP rates were driven by the microstructural influences in and around the welded zone. While the residual stress was remarkable in the shoulder limit areas, it had a minor effect on the FCP behavior.  相似文献   

16.
对比分析了搅拌摩擦和氩弧焊两种工艺方法对铝合金焊接接头疲劳性能的影响,建立了焊接接头的S-N曲线,结果表明:在相同的载荷条件下,搅拌磨擦焊接接头的疲劳性能优于氩弧焊接头。搅拌摩擦焊接头疲劳寿命N=106次的疲劳强度值约为59~65MPa之间。对焊接接头显微组织的分析表明:搅拌摩擦焊接接头具有比氩弧焊接头更为细小的晶粒和狭窄的焊接热影响区,阻碍了滑移带的形成和裂纹的扩展,从而提高了接头的疲劳性能。TIG焊接接头疲劳端口分析显示,焊接缺陷是主要的疲劳裂纹源。  相似文献   

17.
AZ31镁合金搅拌摩擦焊接头断裂机制   总被引:8,自引:0,他引:8  
对AZ31镁合金搅拌摩擦焊接头进行力学性能实验.拉伸、疲劳实验结果显示,AZ31镁合金搅拌摩擦焊接头抗拉强度可以达到母材强度的92.9%,断裂位置在前进面的机械热影响区,认为是前进面机械热影响区不均匀的层状组织和应力集中作用的结果.扫描电镜显示:断口有明显的撕裂纹和纤维状组织.  相似文献   

18.
An extensive study on the fatigue performance of friction stir welded DH36 steel was carried out. The main focus of this experimental testing programme was fatigue testing accompanied by tensile tests, geometry measurements, hardness and residual stress measurements, and fracture surface examination. The SN curve for friction stir butt welded joints was generated and compared with the International Institute of Welding recommendations for conventional fusion butt welds. Friction stir welds of marine grade steel exceeded the relevant rules for fusion welding. This newly developed SN curve is being proposed for use in the relevant fatigue assessment guidelines for friction stir welding of low alloy steel. Fracture surfaces were examined to investigate the fatigue failure mechanism, which was found to be affected by the processing features generated by the friction stir welding tool.  相似文献   

19.
Characterization of macrostructure, microstructure, hardness, precipitate distribution, residual stress, and cyclic deformation behavior of 2024-T351 friction stir welded joints has been conducted. Inhomogeneous microparameters governing the nonuniform residual stresses and cyclic strength are discussed. The cyclic strength of the weld microregimes is controlled by grain size and distribution of precipitates achieved during the weld process. The comprehensive information of micro-and macromechanics is used to assist in understanding the mechanism that governed the fatigue crack initiation, propagation, and life of the welded joints.  相似文献   

20.
This paper presents a probabilistic fatigue crack growth life prediction methodology for spot‐welded joints under variable amplitude loading history. The loading is multi‐axial and is obtained from transient response analysis of a vehicle model using finite‐element analysis. A three‐dimensional (3D) finite element model of a simplified joint with four spot welds is developed, and the static stress analysis of this joint is performed. Then the fatigue crack inside the base material sheet is modelled as a surface crack. Probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction methodology for spot welds. This new method is implemented with MSC/NASTRAN and MSC/FATIGUE and is useful for the reliability assessment of spot‐welded joints against fatigue crack growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号