首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The specimen preparation method is crucial for how much information can be gained from transmission electron microscopy (TEM) studies of supported nanoparticle catalysts. The aim of this work is to develop a method that allows for observation of size and location of nanoparticles deposited on a porous oxide support material. A bimetallic Pt‐Pd/Al2O3 catalyst in powder form was embedded in acrylic resin and lift‐out specimens were extracted using combined focused ion beam/scanning electron microscopy (FIB/SEM). These specimens allow for a cross‐section view across individual oxide support particles, including the unaltered near surface region of these particles. A site‐dependent size distribution of Pt‐Pd nanoparticles was revealed along the radial direction of the support particles by scanning transmission electron microscopy (STEM) imaging. The developed specimen preparation method enables obtaining information about the spatial distribution of nanoparticles in complex support structures which commonly is a challenge in heterogeneous catalysis.  相似文献   

2.
An additional technique for use in the characterization of catalysts by electron microscopy is presented. High resolution secondary electron images obtained in a VG HB501 scanning transmission electron microscope have been used to study the surface topography of catalysts consisting of small metal particles on high surface area carbon supports. Surface features down to nanometre dimensions can be seen, allowing the examination of micropores in the support as well as larger pore structures. The results are compared with pore size distributions determined by gas adsorption methods, and are shown to yield valuable additional information. In addition, the method in principle allows examination of the locations of small metal catalyst particles on the support.  相似文献   

3.
X‐ray microcomputed tomography (μCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon‐carbon fibre composites, nuclear‐grade graphite and tristructural isotropic‐coated fuel particles. Local cracks in carbon‐carbon fibre composites associated with their synthesis process were observed with μCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high‐resolution μCT can be used to probe internal layer defects of tristructural isotropic‐coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 to 5 μm and up could be isolated by tomography. As an added advantage, μCT could also be used to identify regions with high densities of radioisotopes to determine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. In fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic‐coated particles embedded in a silicon carbide matrix was accomplished using μCT and related advanced image analysis techniques.  相似文献   

4.
When performing electron tomography, tilt series of images are often acquired from samples that contain unwanted carbonaceous material, such as an embedding resin, a thin carbon support film or hydrocarbon contamination. The presence of such layers can introduce artefacts in reconstructions, obscuring features of interest. Here, we illustrate the benefit of preprocessing a high‐angle annular dark‐field tomographic tilt series by thresholding unwanted low‐density materials using a simple intensity downshifting procedure. The resulting tomograms have fewer artefacts and segmentation can be performed more accurately. We present two representative examples taken from studies of catalyst nanoparticles and amyloid plaque core material from the human brain.  相似文献   

5.
Multiple‐labelling immuno‐EM is a powerful tool for localizing and co‐localizing different antigens simultaneously in cells and tissues at high spatial resolution. Commonly used labels for this purpose are differently sized gold spheres. A comparison of results obtained with differently sized markers is often difficult, because the diameters of markers influence labelling efficiency. In the current study, we investigate a method for high‐resolution multiple‐labelling immuno‐EM, using equally sized colloidal markers made of different metals. Energy filtering transmission electron microscopy is used to differentiate particles based on elemental composition. The labels consist of colloidal gold, palladium and platinum‐core gold‐shell particles of approximately 6 nm in diameter, which are conjugated to different primary antibodies. Applicability of the electron spectroscopic imaging, methodology is demonstrated by labelling of actin, α‐actinin and myosin on ultra‐thin cryosections of skeletal muscle tissue.  相似文献   

6.
Electron microscopy is used in biological research to study the ultrastructure at high resolution to obtain information on specific cellular processes. Serial block face‐scanning electron microscopy is a relatively novel electron microscopy imaging technique that allows three‐dimensional characterization of the ultrastructure in both tissues and cells by measuring volumes of thousands of cubic micrometres yet at nanometre‐scale resolution. In the scanning electron microscope, repeatedly an image is acquired followed by the removal of a thin layer resin embedded biological material by either a microtome or a focused ion beam. In this way, each recorded image contains novel structural information which can be used for three‐dimensional analysis. Here, we explore focused ion beam facilitated serial block face‐scanning electron microscopy to study the endothelial cell–specific storage organelles, the Weibel–Palade bodies, during their biogenesis at the Golgi apparatus. Weibel–Palade bodies predominantly contain the coagulation protein Von Willebrand factor which is secreted by the cell upon vascular damage. Using focused ion beam facilitated serial block face‐scanning electron microscopy we show that the technique has the sensitivity to clearly reveal subcellular details like mitochondrial cristae and small vesicles with a diameter of about 50 nm. Also, we reveal numerous associations between Weibel–Palade bodies and Golgi stacks which became conceivable in large‐scale three‐dimensional data. We demonstrate that serial block face‐scanning electron microscopy is a promising tool that offers an alternative for electron tomography to study subcellular organelle interactions in the context of a complete cell.  相似文献   

7.
Previous work using focused ion beam (FIB) analysis of osteoblasts on smooth and microrough Ti surfaces showed that the average cell aspect ratio and distance from the surface are greater on the rough surface. In order to better interrogate the relationship between individual cells and their substrate using multiple imaging modalities, we developed a method that tracks the same cell across confocal laser scanning microscopy (CLSM) to correlate surface microroughness with cell morphology and cytoskeleton; scanning electron microscopy (SEM) to provide higher resolution for observation of nanoroughness as well as chemical mapping via energy dispersive X‐ray spectroscopy; and transmission electron microscopy (TEM) for high‐resolution imaging. FIB was used to prepare thin sections of the cell‐material interface for TEM, or for three‐dimensional electron tomography. Cells were cultured on laser‐sintered Ti‐6Al‐4V substrates with polished or etched surfaces. Direct cell to surface attachments were observed across surfaces, though bridging across macroscale surface features occurred on rough substrates. Our results show that surface roughness, cell cytoskeleton and gross morphology can be correlated with the cell‐material cross‐sectional interface at the single cell level across multiple high‐resolution imaging modalities. This work provides a platform method for further investigating mechanisms of the cell‐material interface.  相似文献   

8.
A combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and scanning‐transmission electron microscopy (STEM) using high‐angle annular‐dark‐field (HAADF) imaging, focussed ion beam‐ scanning electron microscopy (FIB‐SEM) tomography, selected area electron diffraction with beam precession (PED), as well as spatially resolved energy‐dispersive X‐ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS), was used to investigate topologically close‐packed (TCP) phases, occurring in the CMSX‐4 superalloy subjected to high temperature annealing and creep deformation. Structural and chemical analyses were performed to identify the TCP phases and provide information concerning the compositional partitioning of elements between them. The results of SEM and FIB‐SEM tomography revealed the presence of merged TCP particles, which were identified by TEM and PED analysis as coprecipitates of the μ and P phases. Inside the TCP particles that were several micrometres in size, platelets of alternating μ and P phases of nanometric width were found. The combination of STEM‐HAADF imaging with spatially resolved EDS and EELS microanalysis allowed determination of the significant partitioning of the constituent elements between the μ and P phases.  相似文献   

9.
We illustrate the combined use of cryo‐electron tomography and spectroscopic difference imaging in the study of subcellular structure and subcellular bodies in whole bacteria. We limited our goal and focus to bodies with a distinct elemental composition that was in a sufficiently high concentration to provide the necessary signal‐to‐noise level at the relatively large sample thicknesses of the intact cell. This combination proved very powerful, as demonstrated by the identification of a phosphorus‐rich body in Caulobacter crescentus. We also confirmed the presence of a body rich in carbon, demonstrated that these two types of bodies are readily recognized and distinguished from each other, and provided, for the first time to our knowledge, structural information about them in their intact state. In addition, we also showed the presence of a similar type of phosphorus‐rich body in Deinococcus grandis, a member of a completely unrelated bacteria genus. Cryo‐electron microscopy and tomography allowed the study of the biogenesis and morphology of these bodies at resolutions better than 10 nm, whereas spectroscopic difference imaging provided a direct identification of their chemical composition.  相似文献   

10.
Bacterial biofilms play key roles in environmental and biomedical processes, and understanding their activities requires comprehension of their nanoarchitectural characteristics. Electron microscopy (EM) is an essential tool for nanostructural analysis, but conventional EM methods are limited in that they either provide topographical information alone, or are suitable for imaging only relatively thin (<300 nm) sample volumes. For biofilm investigations, these are significant restrictions. Understanding structural relations between cells requires imaging of a sample volume sufficiently large to encompass multiple cells and the capture of both external and internal details of cell structure. An emerging EM technique with such capabilities is bright‐field scanning transmission electron microscopy (BF‐STEM) and in the present report BF‐STEM was coupled with tomography to elucidate nanostructure in biofilms formed by the polycyclic aromatic hydrocarbon‐degrading soil bacterium, Delftia acidovorans Cs1‐4. Dual‐axis BF‐STEM enabled high‐resolution 3‐D tomographic recontructions (6–10 nm) visualization of thick (1250 and 1500 nm) sections. The 3‐D data revealed that novel extracellular structures, termed nanopods, were polymorphic and formed complex networks within cell clusters. BF‐STEM tomography enabled visualization of conduits formed by nanopods that could enable intercellular movement of outer membrane vesicles, and thereby enable direct communication between cells. This report is the first to document application of dual‐axis BF‐STEM tomography to obtain high‐resolution 3‐D images of novel nanostructures in bacterial biofilms. Future work with dual‐axis BF‐STEM tomography combined with correlative light electron microscopy may provide deeper insights into physiological functions associated with nanopods as well as other nanostructures.  相似文献   

11.
There is a global trend of increase in the demand for three‐dimensional electron microscopy with high resolution. The ultrastructural change and related functional studies are necessary to investigate biological phenomena. In this study, currently available 3D reconstruction techniques of electron microscopes (serial block‐face scanning electron microscopy and focused ion beam—scanning electron microscopy) were used to investigate hyperpigmentary disorders in human skin. In the basal layer of the epidermis in the human skin, there are melanocytes that produce melanin and keratinocytes that act as a barrier against environmental damage. The 3D structure from serial images through scanning electron microscopy showed locations of melanosomes between melanocyte and keratinocyte in the hyperpigmentary disorder, in addition, the electron tomography showed pigment transfer through melanin instead melanosome. These results support the exocytosis‐endocytosis theory of pigment in human skin.  相似文献   

12.
Aberration‐corrected scanning transmission electron microscopes are able to form electron beams smaller than 100 pm, which is about half the size of an average atom. Probing materials with such beams leads to atomic‐resolution images, electron energy loss and energy‐dispersive X‐ray spectra obtained from single atomic columns and even single atoms, and atomic‐resolution elemental maps. We review briefly how such electron beams came about, and show examples of applications. We also summarize recent developments that are propelling aberration‐corrected scanning transmission electron microscopes in new directions, such as complete control of geometric aberration up to fifth order, and ultra‐high‐energy resolution EELS that is allowing vibrational spectroscopy to be carried out in the electron microscope.  相似文献   

13.
Energy loss spectroscopic profiling is a way to acquire, in parallel, spectroscopic information across a linear feature of interest, using a Gatan imaging filter (GIF) fitted to a transmission electron microscope (TEM). This technique is capable of translating the high spatial resolution of a bright field image into a sampling of the spectral information with similar resolution. Here we evaluate the contributions of chromatic aberration and the various acquisition parameters to the spatial sampling resolution of the spectral information, and show that this can reach 0.5 nm, in a system not ordinarily capable of forming electron probes smaller than 2 nm. We use this high spatial sampling resolution to study the plasmon energy variation across amorphous carbon superlattices, in order to extract information about their structure and electronic properties. By modelling the interaction of the relativistic incident electrons with a dielectric layer sandwiched between outer layers, we show that, due to the screening of the interfaces and at increased collection angles, the plasmon energy in the sandwiched layer can still be identified for layer thicknesses down to 5 A. This allows us to measure the change in the well bandgap as a function of well width and to interpret it in terms of the changes in the sp2 -fractions due to the deposition method, as measured from the carbon K-edges, and in terms of quantum confinement of the well wavefunction by the adjacent barriers.  相似文献   

14.
Focused ion beam-scanning electron microscope (FIB-SEM) tomography is a powerful application in obtaining three-dimensional (3D) information. The FIB creates a cross section and subsequently removes thin slices. The SEM takes images using secondary or backscattered electrons, or maps every slice using X-rays and/or electron backscatter diffraction patterns. The objective of this study is to assess the possibilities of combining FIB-SEM tomography with cathodoluminescence (CL) imaging. The intensity of CL emission is related to variations in defect or impurity concentrations. A potential problem with FIB-SEM CL tomography is that ion milling may change the defect state of the material and the CL emission. In addition the conventional tilted sample geometry used in FIB-SEM tomography is not compatible with conventional CL detectors. Here we examine the influence of the FIB on CL emission in natural diamond and the feasibility of FIB-SEM CL tomography. A systematic investigation establishes that the ion beam influences CL emission of diamond, with a dependency on both the ion beam and electron beam acceleration voltage. CL emission in natural diamond is enhanced particularly at low ion beam and electron beam voltages. This enhancement of the CL emission can be partly explained by an increase in surface defects induced by ion milling. CL emission enhancement could be used to improve the CL image quality. To conduct FIB-SEM CL tomography, a recently developed novel specimen geometry is adopted to enable sequential ion milling and CL imaging on an untilted sample. We show that CL imaging can be manually combined with FIB-SEM tomography with a modified protocol for 3D microstructure reconstruction. In principle, automated FIB-SEM CL tomography should be feasible, provided that dedicated CL detectors are developed that allow subsequent milling and CL imaging without manual intervention, as the current CL detector needs to be manually retracted before a slice can be milled. Due to the required high electron beam acceleration voltage for CL emission, the resolution for FIB-SEM CL tomography is currently limited to several hundreds of nm in XY and up to 650 nm in Z for diamonds. Opaque materials are likely to have an improved Z resolution, as CL emission generated deeper in the material is not able to escape from it.  相似文献   

15.
Midgley PA  Weyland M 《Ultramicroscopy》2003,96(3-4):413-431
The rapid advances in nanotechnology and the ever decreasing size of features in the microelectronics industry brings with it the need for advanced characterisation with high spatial resolution in two and three dimensions. Stereo microscopy allows some insight into the three-dimensional nature of an object but for true quantitative analysis, one has to turn to tomography as a way to reconstruct a three-dimensional object from a series of two-dimensional projections (images). X-ray tomography allow structures to be imaged at relatively large length scales, atom probe tomography at the atomic level. Electron tomography offers an intermediate resolution (of about 1nm) with a field of view of hundreds of nm making it ideal for the characterisation of many nanoscale devices. Whilst electron tomography has been used in the biological sciences for more than 30 years, it is only now being applied to the physical sciences. In this paper, we review the status of electron tomography, describe the basis behind the technique and some of the practicalities of recording and analysing data for tomographic reconstruction, particularly in regard to solving three-dimensional problems that are encountered in materials science at the nanometre level. We present examples of how STEM dark-field imaging and energy-filtered TEM can be used successfully to examine nearly all types of specimens likely to be encountered by the physical scientist.  相似文献   

16.
It is not straightforward to determine resolution for a 3D reconstruction when performing an electron tomography experiment. Different contributions such as missing wedge and misalignment add up and often influence the final resolution in an anisotropic manner. The conventional resolution measures can not be used for all of the reconstruction techniques, especially for iterative techniques which are more commonly used for electron tomography in materials science. Here we define a quantitative resolution measure that determines the resolution in three orthogonal directions of the reconstruction. As an application we use this measure to determine the optimum number of simultaneous iterative reconstruction technique (SIRT) iterations to reconstruct the gold nanoparticles, based on a high angle annular dark field STEM (HAADF-STEM) tilt series.  相似文献   

17.
The focused ion beam technique was used to fabricate transmission electron microscope lamellas of selected, micrometre‐sized airborne particles. Particles were sampled from ambient air on Nuclepore polycarbonate filters and analysed with an environmental scanning electron microscope. A large number of particles between 0.6 and 10 µm in diameter (projected optical equivalent diameter) were detected and analysed using computer‐controlled scanning electron microscopy. From the resulting dataset, where the chemistry, morphology and position of each individual particle are stored, two particles were selected for a more detailed investigation. For that purpose, the particle‐loaded filter was transferred from the environmental scanning electron microscope to the focused ion beam, where lamellas of the selected particles were fabricated. The definition of a custom coordinate system enabled the relocation of the particles after the transfer. The lamellas were finally analysed with an analytical transmission electron microscope. Internal structure and elemental distribution maps of the interior of the particles provided additional information about the particles, which helped to assign the particles to their sources. The combination of computer‐controlled scanning electron microscopy, focused ion beam and transmission electron microscopy offers new possibilities for characterizing airborne particles in great detail, eventually enabling a detailed source apportionment of specific particles. The particle of interest can be selected from a large dataset (e.g. based on chemistry and/or morphology) and then investigated in more detail in the transmission electron microscope.  相似文献   

18.
Focused ion beam (FIB) milling offers a novel approach to preparation of site‐specific cross‐sections of heterogeneous catalysts for examination in the transmission electron microscope (TEM). Electron‐transparent sections can be obtained without the need to embed or grind the original sample. Because the specimen can be imaged in the FIB with submicrometre resolution before, during and after milling it is possible to select precisely the region from which the section is removed and to control the thickness of the section to within tens of nanometres. The ability to produce sections in this way opens the possibility of studying a range of catalyst systems that have previously been impossible to examine with the TEM.  相似文献   

19.
An accurate knowledge of the complex microstructure of a heterogeneous material is crucial for its performance prediction, prognosis and optimization. X‐ray tomography has provided a nondestructive means for microstructure characterization in 3D and 4D (i.e. structural evolution over time), in which a material is typically reconstructed from a large number of tomographic projections using filtered‐back‐projection (FBP) method or algebraic reconstruction techniques (ART). Here, we present in detail a stochastic optimization procedure that enables one to accurately reconstruct material microstructure from a small number of absorption contrast x‐ray tomographic projections. This discrete tomography reconstruction procedure is in contrast to the commonly used FBP and ART, which usually requires thousands of projections for accurate microstructure rendition. The utility of our stochastic procedure is first demonstrated by reconstructing a wide class of two‐phase heterogeneous materials including sandstone and hard‐particle packing from simulated limited‐angle projections in both cone‐beam and parallel beam projection geometry. It is then applied to reconstruct tailored Sn‐sphere‐clay‐matrix systems from limited‐angle cone‐beam data obtained via a lab‐scale tomography facility at Arizona State University and parallel‐beam synchrotron data obtained at Advanced Photon Source, Argonne National Laboratory. In addition, we examine the information content of tomography data by successively incorporating larger number of projections and quantifying the accuracy of the reconstructions. We show that only a small number of projections (e.g. 20–40, depending on the complexity of the microstructure of interest and desired resolution) are necessary for accurate material reconstructions via our stochastic procedure, which indicates its high efficiency in using limited structural information. The ramifications of the stochastic reconstruction procedure in 4D materials science are also discussed.  相似文献   

20.
The contribution describes the implementation of a broad ion beam (BIB) polisher into a scanning electron microscope (SEM) functioning at cryogenic temperature (cryo). The whole system (BIB‐cryo‐SEM) provides a first generation of a novel multibeam electron microscope that combines broad ion beam with cryogenic facilities in a conventional SEM to produce large, high‐quality cross‐sections (up to 2 mm2) at cryogenic temperature to be imaged at the state‐of‐the‐art SEM resolution. Cryogenic method allows detecting fluids in their natural environment and preserves samples against desiccation and dehydration, which may damage natural microstructures. The investigation of microstructures in the third dimension is enabled by serial cross‐sectioning, providing broad ion beam tomography with slices down to 350 nm thick. The functionalities of the BIB‐cryo‐SEM are demonstrated by the investigation of rock salts (synthetic coarse‐grained sodium chloride synthesized from halite‐brine mush cold pressed at 150 MPa and 4.5 GPa, and natural rock salt mylonite from a salt glacier at Qom Kuh, central Iran). In addition, results from BIB‐cryo‐SEM on a gas shale and Boom Clay are also presented to show that the instrument is suitable for a large range of sedimentary rocks. For the first time, pore and grain fabrics of preserved host and reservoir rocks can be investigated at nm‐scale range over a representative elementary area. In comparison with the complementary and overlapping performances of the BIB‐SEM method with focused ion beam‐SEM and X‐ray tomography methods, the BIB cross‐sectioning enables detailed insights about morphologies of pores at greater resolution than X‐ray tomography and allows the production of large representative surfaces suitable for FIB‐SEM investigations of a specific representative site within the BIB cross‐section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号