首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Fuel》2006,85(10-11):1518-1525
The purpose of this study is to investigate the major factors influencing the Na-catalysed and non-catalysed gasification reactivity of a Victorian brown coal in steam. An acid-washed (H-form) sample and a Na-exchanged (Na-form) sample prepared from the same Loy Yang brown coal were gasified in 15% steam in a novel two-stage fluidised-bed/fixed-bed reactor. All C-containing species in the gasification product gas were converted into CO2 that was monitored with a mass spectrometer continuously to determine the in situ gasification reactivity. While the volatile-char interactions were responsible for the volatilisation of Na when the coal was continuously fed into the reactor, the physical entrainment by gas of agglomerated Na-containing crystalline species (likely to be Na2CO3 or Na2O) from char surface was the main mechanism for the loss of Na during char gasification. The Raman spectroscopy of char showed the preferential release of smaller aromatic ring system to be more significant during the non-catalysed char gasification than the Na-catalysed gasification. The dispersion of Na in char appeared to deteriorate with the enrichment of large aromatic ring systems in char, greatly affecting the char gasification reactivity. The char gasification reactivity showed a maximum with increasing conversion with the maximum to shift towards lower conversion with increasing temperature. Increasing temperature does not always lead to increases in the in situ char gasification reactivity.  相似文献   

2.
采用固定床反应器对煤焦进行部分氧化处理,然后测定氧化后煤焦在水蒸气和CO2中的气化行为,并用SEM,XRD和N2/CO2吸附对煤焦结构进行表征.结果表明,煤焦低温氧化处理可以显著改善煤焦的孔隙结构,大幅增加比表面积,降低煤焦的有序化和石墨化程度,从而提高其气化活性;并且随氧化程度( burnout)增加,煤焦气化活性不断增加.随氧化温度升高(>600℃),氧化过程逐渐过渡到扩散控制,O2主要在煤焦外表面反应,因而氧化几乎不会改变煤焦的结构,表面积略有增加,对其后续气化活性无明显影响.  相似文献   

3.
This study is intended to clarify the relationship among the reactivity of coal char with steam, structural change in residual carbon, and ash behavior. Steam gasification of various coal chars and demineralized chars was carried out in a fixed-bed reactor. After gasification, the reacted char was analyzed using laser raman spectroscope (LRS), and scanning electron microscope, energy dispersive X-ray spectroscope (SEM/EDX) mapping. Results of SEM images and EDX-mappings revealed that novel parallel analysis of cross correlation between EDX-mapping and LRS-mapping was found to be very effective for the comprehensive evaluation of ash behavior and carbonaceous structure. As the gasification reaction proceeds, the reactivity of the char was varied; existence of Si and Al seemed to suffocate the char reactivity.  相似文献   

4.
Dimple Mody Quyn  Chun-Zhu Li 《Fuel》2003,82(5):587-593
The purpose of this study is to investigate the catalytic effects of Na as NaCl or as sodium carboxylates (-COONa) in Victorian brown coal on the char reactivity. A Na-exchanged coal and a set of NaCl-loaded coal samples prepared from a Loy Yang brown coal were pyrolysed in a fluidised-bed/fixed-bed reactor and in a thermogravimetric analyser (TGA). The reactivities of the chars were measured in air at 400 °C using the TGA. The experimental data indicate that the Na in coal as NaCl and as sodium carboxylates (-COONa) had very different catalytic effects on the char reactivity. It is the chemical form and dispersion of Na in char, not in coal, that govern the catalytic effects of Na. For the Na-form (Na-exchanged) coal, the char reactivity increased with increasing pyrolysis temperature from 500 to 700 °C and then decreased with pyrolysis temperature from 700 to 900 °C. The increase in reactivity with pyrolysis temperature (500-700 °C) is mainly due to the changes in the relative distribution of Na in the char matrix and on the pore surface. For the NaCl-loaded coals, when Cl was released during pyrolysis or gasification, the Na originally present in coal as NaCl showed good catalytic effects for the char gasification. Otherwise, Cl would combine with Na in the char to form NaCl during gasification, preventing Na from becoming an active catalyst. Controlling the pyrolysis conditions to favour the release of Cl can be a promising way to transform NaCl in coal into an active catalyst for char gasification.  相似文献   

5.
Shu Zhang  Jun-ichiro Hayashi 《Fuel》2011,90(4):1655-1661
Volatile-char interactions are an important consideration in the design and operation of a gasifier. This study aims to investigate the effects of volatile-char interactions on the in situ char-steam reactivity at 800 °C and the ex-situ char-O2 reactivity at 400 °C. A Victorian brown coal was gasified in 15% steam at 800 °C in a one-stage novel fluidised-bed/fixed-bed quartz reactor, in which the extent of volatile-char interactions could be controlled. The chars after varying extents of volatile-char interactions and/or varying extents of char conversion in steam were also collected for the measurement of their reactivity with air at 400 °C in a thermogravimetric analyser. Our results show that the char-steam gasification reactions were greatly inhibited by the volatile-char interactions. It is believed that the H radicals generated from the thermal cracking/reforming of volatiles slowed the char gasification in three ways: occupying the char reactive sites, causing the char structure to re-arrange/condense and enhancing the release of catalytic species inherently present in the brown coal. The importance of volatile-char interactions to char-steam reactivity was further confirmed by the char-air reactivity.  相似文献   

6.
Catalytic gasification of char from co-pyrolysis of coal and biomass   总被引:1,自引:0,他引:1  
The catalytic gasification of char from co-pyrolysis of coal and wheat straw was studied. Alkali metal salts, especially potassium salts, are considered as effective catalysts for carbon gasification by steam and CO2, while too expensive for industry application. The herbaceous type of biomass, which has a high content of potassium, may be used as an inexpensive source of catalyst by co-processing with coal. The reactivity of chars from co-pyrolysis of coal and straw was experimentally examined. The chars were prepared in a spout-entrained reactor with different ratios of coal to straw. The gasification characteristics of chars were measured by thermogravimetric analysis (TGA). The co-pyrolysis chars revealed higher gasification reactivity than that of char from coal, especially at high level of carbon conversion. The influence of the alkali in the char and the pyrolysis temperature on the reactivity of co-pyrolysis char was investigated. The experimental results show that the co-pyrolysis char prepared at 750 °C have the highest alkali concentration and reactivity.  相似文献   

7.
利用热重分析仪研究了水蒸气气氛下霍林河褐煤焦和脱灰褐煤焦的气化动力学特性,并考察了脱灰前后褐煤焦孔结构的变化。结果表明:褐煤原焦气化反应速率在反应初始阶段(转化率30%)高于脱灰褐煤焦,但在反应后期低于脱灰焦,这是因为煤焦中灰分的脱除一方面去除了矿物质的催化作用,另一方面增大了煤焦的孔径,因而减小了气化剂的扩散阻力。灰层扩散控制的缩核模型可以描述褐煤焦水蒸气气化过程,而脱灰后褐煤焦水蒸气气化过程用均相模型可以很好地表示。  相似文献   

8.
A high-pressure bubbling fluidized bed reactor was used to study the steam gasification of coal char under pressure. Indonesian sub-bituminous coal char (Adaro) and Australian lignite char (Loy Yang) were gasified with steam in the reactor at temperatures below 1173 K and at total pressures ranging from 0.1 to 0.5 MPa. The steam gasification rates of the coal chars were determined by analysis of the gaseous products. Activation energies for the steam gasification of the chars were as high as about 250 kJ/mol, which suggests that the temperature dependence of the gasification was substantial. The apparent gasification rates under the study conditions were described by a Langmuir–Hinshelwood (L–H)-type equation. Analysis of the reaction kinetics on the basis of the L–H equation indicated that increasing steam pressure effectively increased the gasification rate.  相似文献   

9.
The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube fur-nace (DTF). The effects of various factors such as types of carbonaceous material, gasification temperature (1100–1400 °C) and mass ratio of steam to char (0.4:1, 0.6:1 and 1:1 separately) on gasification gas or solid products were investigated. The results showed that for al carbonaceous materials studied, H2 content exhibited the larg-est part of gasification gaseous products and CH4 had the smal est part. For the two petroleum cokes, CO2 content was higher than CO, which was similar to Zun-yi char. When the steam/char ratio was constant, the carbon con-version of both Shen-fu and PC chars increased with increasing temperature. When the gasification temperature was constant, the carbon conversions of al char samples increased with increasing steam/char ratio. For al the steam/char ratios, compared to water gas shift reaction, char-H2O and char-CO2 reaction were further from the thermodynamic equilibrium due to a much lower char gasification rate than that of water gas shift reaction rate. Therefore, kinetic effects may play a more important role in a char gasification step than thermodynamic ef-fects when the gasification reaction of char was held in DTF. The calculating method for the equilibrium shift in this study wil be a worth reference for analysis of the gaseous components in industrial gasifier. The reactivity of residual cokes decreased and the crystal layer (L002/d002) numbers of residual cokes increased with increasing gasification temperature. Therefore, L002/d002, the carbon crystallite structure parameter, can be used to evaluate the reactivity of residual cokes.  相似文献   

10.
The effects of pre-oxidation of char from Taiheiyo coal, a non-caking bituminous coal, in the 400–550 °C temperature range on its gasification reactivity with N2-H2O at 0.1 MPa (steam partial pressure of 13.2 kPa) have been investigated. The pre-oxidation of char markedly enhances gasification rates at temperatures between 800 and 900 °C. Reactivity is found to parallel the burn-off level during preoxidation at low temperatures (400–430 °C), whereas at relatively high temperatures (480–550 °C), the burn-off level only affects the reactivity slightly. The amount of CO and CO2 evolved from the preoxidized char by heat treatment is proportional to the burn-off level at low temperatures (400–430 °C), being closely related to the enhancement of the gasification reactivity in steam.  相似文献   

11.
《Fuel》2005,84(12-13):1612-1621
Steam gasification of nascent char from rapid or slow pyrolysis of a Victorian brown coal was performed at 1073–1173 K in a novel drop-tube/fixed-bed reactor, in which steam-containing gas was forced to pass through an extremely thin bed of nascent char particles at sufficiently high velocity and large flux. The nascent char underwent parallel reactions consisting of non-catalytic gasification and catalytic one. The non-catalytic gasification followed first-order kinetics with respect to the fraction of unconverted carbon, and the rate constant was hardly influenced by operating variables such as heating rate for the pyrolysis, total pressure and even period of isothermal heating between the pyrolysis and gasification. The overall activity of inherent catalysts, alkali and alkaline earth metallic species, diminished due to volatilization and intra-particle deactivation, both of which were induced by the gasification. As a result, the catalytic gasification took place within a limited range of the char conversion up to 60–80%. The initial catalyst activity and the kinetics of activity loss largely depended on the operating variables as above and also partial pressure of steam.  相似文献   

12.
A. A. Lizzio  A. Piotrowski  L. R. Radovic 《Fuel》1988,67(12):1691-1695
The gasification reactivity of an Illinois No. 6 bituminous coal char was determined in oxygen and carbon dioxide using thermogravimetric analysis (TGA). Extensive tests were carried out to ensure the absence of diffusional limitations. Measurements of chemically controlled rates were verified by analysing the activation energies for reactions of the char at various conversion levels. The effect of stable carbon-oxygen complex formation on TGA reactivity profiles was investigated. For disordered carbons (e.g. coal chars) gasified in oxygen, the results showed that the observed differences between reactivity profiles obtained by TGA and those obtained by product gas analysis (e.g. non-dispersive infrared spectroscopy, i.r.) can be attributed to significant amounts of stable complex being formed during the initial stages of reaction. The fact that TGA reactivity profiles become equivalent to i.r. reactivity profiles, when corrected to account for stable complex formation, suggests that the former may not be accurate representations of the variations in intrinsic reaction rates and should be used with caution when attempting to validate proposed models of char gasification kinetics. The extent to which stable complex forms during char gasification was used to explain the observed differences in the reactivity profiles obtained for reactions of char in oxygen and carbon dioxide.  相似文献   

13.
微型流化床反应分析及其对煤焦气化动力学的应用   总被引:4,自引:4,他引:0       下载免费PDF全文
在概述最新研发的微型流化床反应分析(micro-fluidized bed reaction analysis,MFBRA)方法与应用的基础上,应用该方法进一步研究了半焦-CO2、半焦-水蒸气等温气化反应动力学,并与热重分析(thermogravimetric analyzer,TGA)求取的气化反应动力学数据比较。在最小化气体扩散的实验条件下,利用MFBRA和TGA测定求算的半焦-CO2、半焦-水蒸气气化反应在受反应动力学控制的低温段的活化能非常接近,说明了MFBRA对等温气化反应分析的适用性和可靠性。实验研究还发现:半焦-CO2、半焦-水蒸气气化反应在MFBRA中受反应动力学控制的温度范围较在TGA中明显宽,且在具有明显扩散影响的高温段通过MFBRA测定的半焦-CO2气化反应表观活化能明显大于利用TGA测定的值,表明在MFBRA中受到的气体扩散抑制效应较小。  相似文献   

14.
燕希敏  苗鹏  常国璋  郭庆杰 《化工进展》2018,37(5):1753-1759
利用固定床反应器和自制Fe/赤泥(RM)、RM催化剂,进行了900℃煤焦/催化剂不同质量比的水蒸气气化实验,并采用原位红外(FTIR)、物理吸附仪(BET)、拉曼光谱(Raman)等测试手段,分析了催化气化过程中不同阶段煤焦的气化反应性、表面官能团、孔隙结构和碳微晶结构的演变规律。结果表明,Fe1/RM2催化剂可显著提高煤焦-水蒸气的气化反应性。在Fe1/RM2/煤焦-水蒸气反应过程中,煤焦表面形成-CH2、-COOH、酚羟基等活性官能团并与Fe1/RM2活性组分相互作用,形成新的小分子基团或化合物;煤焦的比表面积先增大后减小(6.98~323.22m2/g),平均孔径呈现相反的变化趋势(2.91~11.25nm);碳有序化程度先降低后提高,碳转化率为36%煤焦中无定形碳的相对含量最高(0.371)。在煤焦-Fe1/RM2-水蒸气反应初期(XC<36%),煤焦表面活性基团增多、比表面积增大、有序化程度降低,综合提高了煤焦-水蒸气气化反应性;降低36%≤XC≤62%阶段的碳有序化程度,对煤焦气化反应性的提高具有显著意义。  相似文献   

15.
The formation of N-containing products during char-steam gasification has been investigated in a laboratory scale fixed bed reactor. Experiments were conducted at 1000 °C, 0.1-1.0 MPa, and 6-46% of H2O in He base flow. Two very different coal chars, which were prepared from the rapid heating of Australian bituminous and sub-bituminous coals, were studied. The nitrogen-containing products released during the gasification were measured using an FTIR spectrometer (NH3, HCN and HNCO) and gas chromatography (N2). The major N-containing products formed during char-steam gasification are NH3, HCN and N2. Reactions of HCN in the same reactor were also studied; these experiments were conducted with HCN alone, HCN/steam, and HCN/steam/char. The results are consistent with a mechanism in which HCN is the primary N-containing product of the char-steam reaction, and the additional products result from further reactions of HCN either in the gas phase or promoted by the surface of the reactor or the char. Increasing concentrations of steam significantly influence the distribution of char-N to N-containing gas-phase products, resulting in the increase of NH3 at the expense of N2. Some differences in char behaviour are also observed, particularly on the distribution of N-containing products at 0.1 MPa total pressure.  相似文献   

16.
The gasification reactivities of three kinds of different coal ranks (Huolinhe lignite, Shenmu bituminous coal, and Jincheng anthracite) with CO2 and H2O was carried out on a self-made pressurized fixed-bed reactor at increased pressures (up to 1.0 MPa). The physicochemical characteristics of the chars at various levels of carbon conversion were studied via scanning electron microscopy (SEM), X-ray diffraction (XRD), and BET surface area. Results show that the char gasification reactivity increases with increasing partial pressure. The gasification reaction is controlled by pore diffusion, the rate decreases with increasing total system pressure, and under chemical kinetic control there is no pressure dependence. In general, gasification rates decrease for coals of progressively higher rank. The experimental results could be well described by the shrinking core model for three chars during steam and CO2 gasification. The values of reaction order n with steam were 0.49, 0.46, 0.43, respectively. Meanwhile, the values of reaction order n with CO2 were 0.31, 0.28, 0.26, respectively. With the coal rank increasing, the pressure order m is higher, the activation energies increase slightly with steam, and the activation energy with CO2 increases noticeably. As the carbon conversion increases, the degree of graphitization is enhanced. The surface area of the gasified char increases rapidly with the progress of gasification and peaks at about 40% of char gasification.  相似文献   

17.
The gasification reactivity of char from dried sewage sludge (DSS) applicable to fluidized bed gasification (FBG) was determined. The char was generated by devolatilizing the DSS with nitrogen at the selected bed temperature and was subsequently gasified by switching the fluidization agent to mixtures of CO2 and N2 (CO2 reactivity tests) and steam and N2 (H2O reactivity tests).. The tests were conducted in the temperature range of 800–900 °C at atmospheric pressure, using partial pressure of the main reactant in the mixture (CO2 or H2O) in the range of 0.10–0.30 bar. Expressions for the intrinsic reactivity (free of diffusion effects) as a function of temperature, partial pressure of gas reactant (CO2 or H2O) and degree of conversion were obtained for each reaction. For the whole range of conversion it was found that the char reactivity in an H2O–N2 mixture was roughly three times higher than that in a mixture with the corresponding partial pressure of CO2. The reactivity was only influenced by particle size greater than 1.2 mm in the tests with steam at 900 °C. It was demonstrated that the method of char preparation greatly influences the reactivity, highlighting the importance of generating the char in conditions similar to that in FBG.  相似文献   

18.
Daniel M. Keown  Chun-Zhu Li 《Fuel》2008,87(7):1127-1132
An Australian cane trash biomass was pyrolysed by heating at a slow heating rate to 700-900 °C in an inert gas atmosphere. The chars were then gasified in situ with steam. Our results indicate that the gasification of char with steam, even only for 20 s when the char conversion was minimal, resulted in drastic reduction in the intrinsic reactivity of char with air at 400 °C. The decreases in the char reactivity were not mainly due to the possible volatilisation of inherent catalysts during gasification in steam. Instead, the FT-Raman spectroscopy of the chars showed that the gasification of char with steam resulted in drastic changes in char structure including the transformation of smaller ring systems (3-5 fused rings) to large ring systems (?6 fused rings). It is believed that the intermediates of char-steam reactions, especially H, penetrated deep into the char matrix to induce the ring condensation reactions.  相似文献   

19.
This paper reports the significant enhancement of hydrogen production during the gasification of Victorian brown coal with steam using iron as a catalyst. Iron was loaded into the acid-washed Loy Yang brown coal using ferric chloride aqueous solution. Gasification experiments were carried out using a quartz reactor at a fast particle heating rate. The yield of char was determined by directly weighing the reactor before and after each experiment. Gases were analysed using a GC with dual columns. The overall gasification rate of a char increases greatly in the presence of iron. The transformation of iron species during pyrolysis and gasification was examined using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that both reduced-iron (α-Fe and γ-Fe) and magnetite (Fe3O4) highly dispersed in a char can catalyse the gasification of the char with steam. In particular, the char from iron-loaded coal samples gives much higher yields of H2 than a char from the acid-washed coal under similar conditions. The mechanism for the enhancement of hydrogen production in the presence of iron is discussed.  相似文献   

20.
《中国化学工程学报》2014,22(11-12):1208-1214
The chemical looping gasification uses an oxygen carrier for solid fuel gasification by supplying insufficient lattice oxygen. The effect of gasifying medium on the coal chemical looping gasification with CaSO4 as oxygen carrier is investigated in this paper. The thermodynamical analysis indicates that the addition of steam and CO2 into the system can reduce the reaction temperature, at which the concentration of syngas reaches its maximum value. Experimental result in thermogravimetric analyzer and a fixed-bed reactor shows that the mixture sample goes through three stages, drying stage, pyrolysis stage and chemical looping gasification stage, with the temperature for three different gaseous media. The peak fitting and isoconversional methods are used to determine the reaction mechanism of the complex reactions in the chemical looping gasification process. It demonstrates that the gasifying medium (steam or CO2) boosts the chemical looping process by reducing the activation energy in the overall reaction and gasification reactions of coal char. However, the mechanism using steam as the gasifying medium differs from that using CO2. With steam as the gasifying medium, parallel reactions occur in the beginning stage, followed by a limiting stage shifting from a kinetic to a diffusion regime. It is opposite to the reaction mechanism with CO2 as the gasifying medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号