首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用烧结-机械球磨二步法制备了Mg2Ni(A2B)、Mg1.7Al0.3Ni、Mg2Ni0.8Cr0.2、Mg1.8Al0.2Ni0.8Cr0.2储氢合金材料,采用XRD和SEM研究了A侧取代元素舢和B侧取代元素Cr的加入对Mg2Ni储氢合金组织结构的影响。研究结果表明:Al、Cr元素的同时存在产生了协同改性作用,Cr元素的存在会抑制Al元素与Ni元素之间形成Al3Ni2非吸氢相,能促使Mg、Al、Ni反应形成Mg3AlNi2吸氢相;Al元素的存在会抑制Cr元素与Ni元素形成δ-[Cr,Ni]非吸氢相。  相似文献   

2.
采用烧结-机械球磨二步法制备了Mg2Ni、Mg1.7Al0.3Ni、Mg2Ni0.8Cr0.2、Mg0.8Al0.2Ni0.8Cr0.2储氢合金材料,研究了Al、Cr元素的加入对Mg2Ni储氢合金电化学储氢性质的影响。研究结果表明,适量Al元素的加入能改善储氢合金电极的电化学储氢性质,cr元素的加入能较好地改善循环稳定性,Al元素和cr元素同时加入会产生协同改性作用。认为Al、Cr元素协同改性作用的机理是:Cr元素的加入使得元素在合金化过程中避免形成A13Ni2非吸氢相,而形成Mg3A1Ni2吸氢相,因此储氢合金容量没有下降反而增加;A1元素能降低合金电极腐蚀的原因是形成了保护性表面氧化物Al2O3,Cr元素能大幅度提高合金电极吸傲氢循环稳定性的原因是由于cr原子半径比Ni原子半径大,发生取代后会引起晶格参数增大,增强了储氢合金抗粉化能力。  相似文献   

3.
先采用氢化燃烧合成法制备Mg95Ni5,然后将氢化燃烧合成产物与30%(质量分数)La0.7Mg0.3Ni2.8Co0.5合金进行机械球磨复合,球磨时间分别为5、10、15和20h;将Mg95Ni5的氢化燃烧合成产物直接球磨10h用于对比研究.采用X射线衍射仪、扫描电镜、能谱仪及气体反应控制器研究了材料的相组成、微观形貌、颗粒化学成分以及吸放氢性能.研究表明,球磨10h的Mg95Ni5/La0.7Mg0.3Ni2.8Co0.5复合物具有最佳的吸放氢性能,在373K,50s内基本达到饱和吸氢量3.78%(质量分数);在523K,1800s内放氢量为3.83%(质量分数);其起始放氢温度为425K,与Mg95Ni5相比降低了35K,吸放氢性能的改善与复合物的组织结构密切相关.此外,La0.7Mg0.36Ni2.8Co0.5的加入改善了复合物的放氢动力学性能.  相似文献   

4.
采用两步法(球磨 烧结),制备了Mg2-xAlxNi(x=0、0.1、0.3)合金,研究了Al对Mg2Ni合金储氢性能的影响.XRD和SEM研究表明Al的加入使合金中产生了Mg3AlNi2新相.利用PCT测试仪测定了合金的储氢性能,结果表明:添加Al元素会降低合金的吸氢量,但能有效地提高放电容量和循环稳定性.制备出的Mg1.9Al0.1Ni和Mg1.7Al0.3Ni相比,前者具有较大的吸氢量,后者的放电容量较大,循环稳定性较好.  相似文献   

5.
针对两种新型稀土型储氢合金La0.5Y0.5Ni4.8Mn0.1Al0.1和La0.5Y0.5Ni4.8Al0.2的储氢特性进行研究分析。实验表明,相同温度下,La0.5Y0.5Ni4.8Mn0.1Al0.1和La0.5Y0.5Ni4.8Al0.2合金的PCT曲线基本重合,且都具有优良的吸氢动力学性能;相比之下,后者的滞后系数要小于前者,吸氢量较大,吸氢速率也较快,故其储氢性能较优。300次吸放氢循环实验结果表明,La0.5Y0.5Ni4.8Al0.2合金的吸氢动力学性能虽然略有下降,但抗粉化性能较好。  相似文献   

6.
采用氢气反应球磨法,将煤基微晶碳及少量Ni和Al添加到镁粉中在1MPa氢气中球磨3h制得储氢材料67Mg29C3Ni1Al.放氢测试结果表明,温度越高,放氢速度越快,放氢量越大,数据拟舍得出放氢反应为表观一级反应.根据阿伦尼乌斯方程计算得出,在300~350℃范围内,放氢反应表观活化能为(138.0±6)kJ/mol.与储氢材料70Mg30C及纯MgH2相比,微晶碳和催化剂Ni、Al缩短了储氢材料的放氢时间,加快了放氢速度,提高了放氢量,降低了表观活化能,放氢动力学性能得到了改善.  相似文献   

7.
碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究   总被引:1,自引:0,他引:1  
以改性无烟煤为助磨剂,在氢气气氛下球磨制备了具有纳米结构的镁铝合金储氢材料,通过SEM,XRD,TPD等手段对比研究了球磨吸氢材料及静态再吸氢材料的晶相结构及放氢动力学性能.结果表明:改性无烟煤具有良好的助磨作用,经5.5h球磨,材料平均粒度可达74nm;镁铝合金经反应球磨后,其中的Mg转化成了β-MgH2和γ-MgH2,放氢峰温低于300℃;静态再吸氢后,MgH2全部以β-MgH2存在,且晶体粒度增长60%,Mg17Al12分解为单质Mg和Al,其中单质Al使储氢材料放氢活化能降低,用Kissinger方程计算出球磨储氢和再吸氢材料的放氢一级表观活化能分别为107.3kJ/mol和67.1kJ/mol.  相似文献   

8.
以不经压制的Mg、Ni混合粉末为原料,利用氢化燃烧合成法在合成温度850 K和1.8 MPa初始合成氢压下制备了镁基储氢合金氢化物Mg2NiH4,并利用XRD及PCT仪分析了其物相组成和储氢性能.研究表明,产物由单一物相Mg2NiH4组成,无未反应的Ni和不完全氢化的Mg2NiH0.3;相对于传统熔炼法制备的Mg2Ni,氢化燃烧合成产物具有更高的氢化活性,在没有任何活化处理的前提下,第一次吸氢就能以很快的速度达到饱和吸氢量,同时在任何吸氢温度下均具有较好的吸氢动力学性能,且随温度的降低,最大吸氢量降低幅度较小,平台压和吸放氢温度的关系为:lgP(0.1 MPa)=-3 187.6/ T 6.362 4(吸氢),lgP(0.1 MPa)=-3 468.4/T 6.694 3(放氢).  相似文献   

9.
为了改善Mg2Ni型贮氢合金的吸放氢动力学性能,用La部分替代合金中的Mg。用快淬工艺制备了Mg2Ni型Mg2-xLaxNi(x=0、0.2、0.4、0.6)贮氢合金,获得长度连续,厚度约为30μm,宽度为25mm的薄带。用XRD、SEM、HRTEM分析了快淬态合金薄带的微观结构,用DSC研究了快淬薄带的热稳定性,应用Sieverts装置研究了快淬态合金的吸放氢动力学,探索了La替代Mg对快淬Mg2Ni型合金吸放氢动力学性能的影响。结果发现,在快淬无La合金中没有出现非晶相,但快淬含La合金显示了以非晶相为主的结构。表明La替代Mg显著提高Mg2Ni型合金的非晶形成能力。快淬合金的热稳定性随La含量的增加而上升。快淬态合金的吸氢量随La含量的增加而减小,但其放氢量在La含量x=0.2时有极大值,这主要归因于La替代Mg导致的结构变化。  相似文献   

10.
采用化学镀铜的方法,对A2B7型贮氢合金La0.75Mg0.25Ni3.2Co0.2Al0.1进行表面包覆处理,系统研究了不同温度下表面包覆铜对La0.75Mg0.25Ni3.2Co0.2Al0.1合金电极电化学性能的影响。结果表明:与未包覆相比,包覆后合金电极的高倍率放电性能、交换电流密度、氢的扩散速率和循环寿命均得到明显的提高,并且随着镀铜反应温度的升高而增大,但合金电极的最大放电容量有所降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号