首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multi-wall carbon nanotubes decorated with tungsten sulfide (MWCNTs-WS2) were synthesized by using a hydrothermal method, and used as a low-cost platinum-free counter electrode for dye-sensitized solar cell (DSSC). Cyclic voltammetry and electrochemical impedance spectroscopy characterizations indicate that the counter electrode has a high catalytic activity for the reduction of triiodide to iodide and a low charge transfer resistance at the electrolyte–electrode interface. A DSSC based on this counter electrode achieves a high power conversion efficiency of 6.41% under a simulated solar illumination of 100 mW cm−2 (AM 1.5). This efficiency is comparable to 6.56% for a DSSC with Pt counter electrode.  相似文献   

2.
The electrochemical modification of carbon nanotube films (buckypapers) in three different electrolytes consisting of two acids and a basic solvent at very low concentrations was studied. The electrolysis was performed at 1 A up to a maximum of 12 h. Four different characterization techniques have been employed for assessing the effectiveness of the proposed process. The results presented are very encouraging for the development of electrochemical oxidation as the main surface modification method for carbon nanotubes. It was found that the use of nitric acid electrolyte leads to scalable and controllable oxidation as compared to the basic electrolyte which was also effective but appeared to damage the graphitic structure of nanotubes during longer treatments.  相似文献   

3.
A new hydrazine sensor has been fabricated by immobilizing hematoxylin at the surface of a glassy carbon electrode (GCE) modified with multi-wall carbon nanotube (MWCNT). The adsorbed thin films of hematoxylin on the MWCNT modified GCE show one pair of peaks with surface confined characteristics. The hematoxylin MWCNT (HMWCNT) modified GCE shows highly catalytic activity toward hydrazine electro-oxidation. The results show that the peak potential of hydrazine at HMWCNT modified GCE surface shifted by about 167 and 255 mV toward negative values compared with that at an MWCNT and activated modified GCE surface, respectively. In addition, at HMWCNT modified electrode surface remarkably improvement the sensitivity of determination of hydrazine. The kinetic parameters, such as the electron transfer coefficient, α, and the standard heterogeneous rate constant, k0, for oxidation of hydrazine at the HMWCNT modified GCE were determined and also is shown that the heterogeneous rate constant, k′, is strongly potential dependent. The overall number of electron involved in the catalytic oxidation of hydrazine and the number of electrons involved in the rate-determining steps are 2 and 1, respectively. The amperometric detection of hydrazine is carried out at 220 mV in 0.1 M phosphate buffer solution (pH 7) with linear response range 2.0-122.8 μM hydrazine, detection limit of 0.68 μM and sensitivity of 0.0208 μA μM−1. Finally the amperometric response for hydrazine determination is reproducible, fast and extremely stable, with no loss in sensitivity over a continual 400 s operation.  相似文献   

4.
Luminescent short thiol-functionalized multi-wall carbon nanotubes   总被引:1,自引:0,他引:1  
Luminescent short thiol-functionalized multi-wall carbon nanotubes (mean length 100-200 nm) were produced by the reaction between 2-aminoethanethiol molecules and oxidized carbon nanotubes with the aid of a coupling agent in ethanol. After the reactions stop the carbon nanotubes suspension was purified and filtered to separate the shorter carbon nanotubes. The short length carbon nanotubes fraction exhibits an intense luminescence visible to the naked eye. The maximum of the luminescence band and its intensity strongly depends on the excitation wavelength. The sample chemistry and morphology were characterized by means of X-ray photoelectron spectroscopy and scanning electron microscopy.  相似文献   

5.
Commercial multiwall carbon nanotubes (MWCNT-s) were treated by RF activated N2 gas plasma at (nominally) room temperature. Treatment time of 5 to 10 min was applied at negative bias varying in the 0-300 V range. Surface chemical alterations were followed by X-ray photoelectron spectroscopy (XPS). All the applied treatments resulted in a significant build-up of nitrogen in the surface of MWCNT-s. The amount of nitrogen varied between 19 and 25 at.% depending on the treatment time and, in a lesser extent, also on biasing conditions. Interestingly, the nitrogen attachment was also significant (20 at.%) when the treatment commenced without bias. Evaluating the high-resolution N1s XP spectral region, typically three different chemical bonding states of the nitrogen was delineated. Peak component at 398.3 ± 0.3 eV is assigned to CNC type, at 399.7 ± 0.3 eV to sp2 N in melamine-type ring structure and at 400.9 ± 0.3 eV to N substituting carbon in a graphite-like environment. Identical chemical bonding of the nitrogen was detected on the surface of highly oriented pyrolytic graphite (HOPG) and on microcrystalline graphite surfaces treated in the same way for comparison. Estimating the penetration depth of the nitrogen atoms by the SRIM program it was concluded that at the applied DC bias energy range the implanted nitrogen is incorporated in the top 2-4 monoatomic layers of the samples. A model for the distribution of the chemically bonded nitrogen on the outer walls of the MWCNT-s is proposed.  相似文献   

6.
7.
A nanoassembly of single-walled carbon nanotubes coated by a thin layer of silica followed by quantum dots was prepared. That the quantum dots retained their photoluminescent properties after deposition onto the silylated carbon nanotubes suggests that the thin layer of silica prevented the quenching of the fluorescence by the nanotubes. This fluorescent nanoassembly represents an excellent building block for photoelectric and optical devices and biological nanoprobes.  相似文献   

8.
多壁碳纳米管改性聚氨酯弹性体的研究   总被引:1,自引:1,他引:0  
采用多壁碳纳米管(MWCNT)对聚氨酯弹性体(PUE)进行改性,研究MWCNT用量、分散方式以及偶联剂表面处理等因素对PUE性能的影响.结果表明,MWCNT在PU基体中为部分纳米级分散;随着MWCNT用量的增大,PUE的100%定伸应力和拉伸强度呈现先减小后增大再减小的趋势,而拉断伸长率呈现先增大后减小的趋势.动态力学性能分析结果表明,PUE的tanδ时随着MwcNT用量的增大而减小,弹性提高,采用偶联剂对MWCNT进行表面处理后,MWCNT与PU基体间的相互作用有一定提高,但团聚现象增加.  相似文献   

9.
Efficient electrochemical treatments of multi-wall carbon nanotubes (MWCNTs) in acetonitrile were performed by cycling the applied potential on a carbon paper grown with MWCNTs between −2.000 V and 2.000 V (vs Ag/AgClO4) at a scan rate of 0.5 V/s. The tailored MWCNTs with obvious morphological modification could be further cut into short tubular structures through ultrasonic processing in ethanol. Various analytical techniques, including scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy, were used to probe the morphological and structural evolution of MWCNTs during the treatments. The length of the shortened tubular structures ranged from a hundred to a few hundred nanometers, depending on the electrochemical procedures applied. The deformed and shortened MWCNTs displayed a graphitic crystalline structure. These results suggest that repeated electrochemical oxidation and reduction processing of MWCNTs opens up a new route to controlling surface modification and cutting of MWCNTs, which will facilitate their application in areas such as energy storage, catalytic support, and biosensing.  相似文献   

10.
Polyacrylonitrile (PAN)-based carbon fibers, embedded with multi-wall carbon nanotubes (MWCNT) in different concentrations, have been prepared by an electrospinning technique and investigated using scanning electron microscopy, Raman, and positron annihilation spectroscopy. An analysis of the positron lifetime and Doppler broadened spectral line shape has been made. Positron lifetime spectra for all the samples give best fit for three distinct lifetime components. Raman data has been used to estimate the sp2 mole fraction in the fiber. It is found that the gradual changes incorporated in the fiber due to the addition of MWCNTs are reflected as well defined changes in the positron lifetime and the S parameter of the Doppler broadened spectral line. Annihilation parameters are discussed from the point of view of formation of distinct positron trapping sites in the form of vacancy type defects at the interfaces of MWCNTs and the PAN matrix, and their variations in concentration due to different amount of MWCNTs added.  相似文献   

11.
Donghua Xu  Huan Liu  Liang Yang  Zhigang Wang   《Carbon》2006,44(15):3226-3231
Films of superhydrophobic multi-wall carbon nanotubes (MWCNTs) have been obtained by using alkyl-modified MWCNTs (MWCNT(COOC18H37)n) and a simple and effective preparation method. The films show both a high contact angle and a small sliding angle for water droplets. A particular characteristic is that on the superhydrophobic surface the alkyl-modified MWCNTs are not intentionally aligned, thus avoiding the preparation techniques using aligned carbon nanotubes to produce the same effect.  相似文献   

12.
SiO2 reinforced with both multi-wall carbon nanotubes (MWCNTs) and ZnO particles was prepared. Owing to the consumption of an amorphous carbon layer on the outer surface of MWCNTs and the generation of oxygen vacancies in ZnO during sintering, the contact resistance between MWCNTs is lowered and a higher concentration of charge carriers is produced in ZnO. The permittivity of the composite is improved by both changes. The composite containing 15 wt% ZnO particles and 3 wt% MWCNTs exhibits a wider effective absorption bandwidth and lower minimum reflection coefficient than both SiO2 reinforced with 15 wt% ZnO particles and SiO2 reinforced with 3 wt% MWCNTs.  相似文献   

13.
14.
The response of pristine, nitrogen and boron doped carbon nanotube (CNT) sensors to NO2, CO, C2H4 and H2O at ppm concentrations was investigated at both room temperature and 150 °C. N-doped CNTs show the best sensitivity to nitrogen dioxide and carbon monoxide, while B-doped CNTs show the best sensitivity to ethylene. All tubes (including undoped) show strong humidity response. Sensing mechanisms are determined via comparison with density functional calculations of gas molecule absorption onto representative defect structures in N and B-doped graphene. N-CNTs show decreased sensitivity with temperature, and detection appears to occur via gas physisorption. B-CNTs appear to react chemically with many of the absorbed species as shown by their poor baseline recovery and increasing sensitivity with temperature. This limits their cyclability. Overall gas sensitivity is as good or better than post-growth functionalised nanotubes, and used in combination, CNTs, N-CNTs and B-CNTs appear highly promising candidates for cheap, low power, room temperature gas sensing applications.  相似文献   

15.
16.
C. Ni 《Carbon》2009,47(12):2898-6578
The optical absorption anisotropy of multi-walled carbon nanotubes (MWCNTs) has been quantitatively characterized through the determination of the absorbance and the degree of linear polarization. A model considering the orientation of the MWCNTs and the sensitivity to both co-polarized and cross-polarized radiation, through electric field depolarization effects, was used to understand the experimental results. The MWCNT optical absorption cross-sections for both the co-polarized radiation (∼0.1 Å2/atom) and the cross-polarized radiation (∼0.05 Å2/atom) were found to be much larger than for single-walled carbon nanotubes. Our results indicate the promise of MWCNTs for applications involving radiation absorption.  相似文献   

17.
Hexavalent chromium (Cr(VI)) adsorption from aqueous solutions on magnetically modified multi-wall carbon nanotubes (M-MWCNT) and activated carbon (M-AC) was investigated. M-MWCNT and M-AC were prepared by co-precipitation method with Fe2+:Fe3+ salts as precursors. The magnetic adsorbents were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The effects of amount of adsorbents, contact time, initial pH, temperature and the initial concentration of Cr(VI) solution were determined. The adsorption equilibrium, kinetics, thermodynamics and desorption of Cr(VI) were investigated. Equilibrium data fitted well with the Langmuir isotherm for both of the adsorbents. The theoretical adsorption capacities are 14.28 mg/g of M-MWCNT and 2.84 mg/g of M-AC. Cr(VI) adsorption kinetics was modeled with pseudo-second order model, intra-particle diffusion model and Bangham model. Thermodynamic parameters were calculated and ΔG°, ΔH° and ΔS° indicate that the adsorption of Cr(VI) onto M-MWCNT and M-AC was exothermic and spontaneous in nature. Results revealed that M-MWCNT is an easily separated effective adsorbent for Cr(VI) adsorption from aqueous solution.  相似文献   

18.
Qingfeng Liu 《Carbon》2008,46(11):1417-1423
A simple method has been developed for direct synthesis of magnetic multi-walled carbon nanotubes (MWCNTs) homogeneously decorated with size-controllable Fe nanoparticles (Fe-NPs) encapsulated by graphitic layers on the MWCNT surface by pyrolysis of ferrocene. These composites have similar C/Fe atomic ratio of ∼10 and exhibit sufficiently high saturation magnetization for magnetic separation in a liquid phase. Moreover, with 0, ∼1, ∼2 wt% sulfur as growth promoter, the size of Fe-NPs can be controlled with an average diameter of ∼5, ∼22 and ∼42 nm, respectively. When compared to time-consuming wet-chemical methods, the simplicity of this method should allow easy large-scale production of these magnetically functionalized MWCNTs, which can be used as catalyst supports with high stability for effective magnetic separation in liquid-phase reactions, especially under acid/basic conditions.  相似文献   

19.
The field emission (FE) properties of vertically aligned carbon nanotube (CNT) arrays having a surface decorated with Ta layer were investigated. The CNTs with 6 nm thickness of Ta decoration showed improved FE properties with a low turn-on field of 0.64 V/μm at 10 μA/cm2, a threshold field of 1.06 V/μm at 1 mA/cm2 and a maximum current density of 7.61 mA/cm2 at 1.6 V/μm. After Ta decoration, the increased emission centres and/or defect sites on the surface of CNTs improved the field enhancement factor. The work function of CNTs with Ta decoration measured with ultraviolet photoelectron spectroscopy decreased from 4.74 to 4.15 eV with increasing Ta thickness of 0–6 nm. The decreased work function and increased field enhancement factor were responsible for the improved FE properties of the vertically aligned CNTs. Moreover, a significant hysteresis in the cycle-testing of the current density with rising and falling electric field process was observed and attributed to the adsorption/desorption effect, as confirmed by the photoelectron spectrum.  相似文献   

20.
Using first-principles calculations on multi-wall carbon nanotubes (MWCNTs) we probe defect-related processes that bear on key properties. We find that self-interstitial (SI) ingression leads to bridges between the inner-most walls, minimizing carrier scattering in the outer-shells, but also possibly stabilizing radiation damage through vacancy-SI separation. The SI bridges amplify the corrugation, energy dissipation, and hysteresis under inter-wall displacement. They can thus be detrimental to MWCNT-based oscillators or actuators, or be exploited as nano-locks and heat nano-pumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号