共查询到20条相似文献,搜索用时 323 毫秒
1.
2.
基于经验模态分解的旋转机械振动信号滤波技术研究 总被引:21,自引:4,他引:21
把经验模态分解方法引入了旋转机械振动信号滤波领域,详细地解释了这种方法及其算法。通过对一个带高频毛刺干扰的振动信号的经验模态分解与本征模函数的组合,演示了基于经验模态分解的振动信号滤波的方法。把振动信号滤波前后的波形进行了比较,发现基于经验模态分解的信号滤波方法对振动信号滤波有较好的效果。 相似文献
3.
旋转机械在线状态监测和故障诊断系统中振动数据的实时存储和远程传输对数据压缩提出了较高的要求.小波分析做为数据处理的常用方法,已被广泛地应用于数据压缩并取得了良好的效果.给出了振动信号的小波通用压缩方法,通过分析旋转机械振动信号的特点和小波函数几种重要属性对小波压缩的影响,提出了旋转机械振动信号压缩过程中最优小波基的选择方法,并根据旋转机械实际故障信号比较了相应小波的压缩效果.结果表明,通过选择合适的小波基函数,可以有效提高重构信号的信噪比.对于旋转机械复杂突变类故障信号应选择低分解消失矩,高重构正则性的双正交小波进行压缩.本研究方法和结论对旋转机械振动信号小波压缩的进一步研究有一定的参考作用. 相似文献
4.
5.
时频等高图在旋转机械振动故障信号检测中的应用 总被引:7,自引:1,他引:7
提出用基于Morlet小波变换的时频等高图检测信号中奇异性的方法。旋转机械某些故障发生时将产生具有奇异性的非平稳信号,检没出振动信号中的奇异性对于设备状态监测和故障早期诊断很有意义。小波变换在时域和频域内同时具有局部化能力,是分析故障信号奇异性的有利工具,为旋转机械故障检测提供了新思路。文中通过对仿真的旋转机械转子各类振动突变信号进行分析,说明Morlet小波时频等高图能直观表示信号中的微弱奇异成分,可以有效提取信号中的微弱奇异特征。 相似文献
6.
用加速度传感器获取主轴箱振动信号,应用小波包分解提取故障特征向量,进一步用特征向量训练前向传播BP神经网络,建一立齿轮运行状态分类器,对齿轮故障进行识别。实验结果表明,基于小波包分解能量提取故障特征是十分有效的。 相似文献
7.
发动机汽缸振动信号的小波包分解与故障诊断 总被引:3,自引:0,他引:3
通过一种改进的小波包分解算法,有效解决了小波包分解过程中出现的混频现象。利用该算法对振动信号进行实例分析,通过对信号进行小波包分解和重构,可看到信号的概貌和细节,并能捕获到携带设备运行状态和故障特征的奇异信号,便于进行深层信息处理,以查找故障源。 相似文献
8.
基于自相关的旋转机械振动信号EMD分解方法研究 总被引:2,自引:1,他引:2
提出基于自相关的振动信号经验模态分解(empirical mode decomposition,EMD)方法,该方法的步骤为,首先对振动信号进行自相关处理,然后再用EMD方法进行分解.该方法与直接用EMD分解的方法进行相比,具有如下优点, 能把受到严重干扰的信号的主要振动模态更清晰地分解出来;不用信号延拓就可以获得较好的分解效果,避免了延拓不好对EMD分解效果的影响.研究结果表明,该方法相对直接EMD分解的方法能更好地把主要的振动模态从振动信号中分解出来.该方法可广泛用于旋转机械振动信号时频分析领域. 相似文献
9.
为了诊断回转窑工作故障和评估窑运行状况,有效提取窑筒体故障的特征信号极为重要.通过分析故障状态下窑筒体与托轮之间受力关系,建立托轮振动模型,得出窑故障与托轮位移振动的关联关系.针对现有窑筒体故障特征信息提取方法的不足,提出基于小波包分解的特征频率提取方法,对实际采集的数据进行小波包分解和提取特征频段进行重构.对重构后的... 相似文献
10.
小波包分解方法在基于响应信号的结构损伤检测中被证明对损伤程度高度敏感,得到广泛的应用.在小波包分解中采用的是完全二进制分叉树型分解,而实际上在分解过程中部分子信号仅含有很少的信息量,对其再进一步分解是不必要的.通过引入熵的概念,可以对分解过程中的各层子信号进行选择,仅对含有足够丰富信息的子信号进行更进一步的分解.这样做可以有效减少最终所得子信号数目,在保持灵敏度的同时降低损伤指标的维数,有助于缩减损伤识别中神经网络的规模,对于大型复杂结构的损伤检测工作具有一定的意义. 相似文献
11.
小波包分析在旋转机械冲击故障诊断中的应用研究 总被引:2,自引:0,他引:2
小波理论在工程中应用的特点之一是能对信号进行多维多分辨率分解及重构,能够用于提取信号的一些特征成份。基于这一优点,本文将小波包分解及重构理论应用于旋转机械冲击故障信号的处理,通过对试验数据的分析,得到了清晰、直观的系统冲击响应成份,与同时测得的声发射信号相对照,说明这一方法是有效的。 相似文献
12.
基于小波包能量谱齿轮振动信号的分析与故障诊断 总被引:5,自引:0,他引:5
小波包是继小波分析之后提出的一种新型的多尺度分析方法,解决了小波分析在高频部分分辨率差的缺点,体现了比小波分析更好的处理效果.测试了齿轮传动系统在几种不同故障类型下的振动信号,利用小波包变换的分解和重构算法,有效地提取出齿轮故障特征信号,得到试验结果.通过比较时域分析、频域分析和小波包分析对齿轮振动信号进行的特征提取,... 相似文献
13.
14.
基于数学形态变换的转子故障特征提取方法 总被引:1,自引:0,他引:1
基于非线性数学形态变换提出旋转机械故障特征提取的新方法.由数学形态变换构成的形态滤波器可以有效地提取出信号的边缘轮廓以及形状特征,通过选取不同长度的形态结构元素,采用组合形态滤波器将旋转机械故障信号分解到不同频带上,故障信号被分解成基频成分、故障成分及高频噪声三部分,在分解过程中,信号长度没有减少,没有信息的丢失;将分解得到的故障成分单独提取出来进行分析,可以更准确描述故障特征;对实际碰摩故障信号进行形态学分解后,提取出故障成分,采用Hilbert-Huang变换(Hilbert-Huang transform,HHT)对分解前后的信号进行对比分析,验证了方法的有效性,表明基于形态变换的信号特征提取可以更准确刻画故障的非平稳特性,提高了分析效果,并具有计算简单、快速的优点. 相似文献
15.
小波包算法在滚动轴承的在线故障诊断中的应用 总被引:8,自引:0,他引:8
对小波变换的理论进行了简要的阐述,并介绍了小波包理论。指出了在强噪声的背景下小波包变换的算法对于瞬态信号提取的有效性,表明了小波包变换对信号的去噪声,滤波等方面具有广泛的前景。并以五套6307号轴承为例进行了诊断,结果与实际情况相一致,说明该算法十分适合于滚动轴承的在线监测与故障诊断。 相似文献
16.
17.
可视化旋转机械故障智能诊断系统设计 总被引:2,自引:0,他引:2
介绍了可视化旋转机械故障智能诊断系统设计基本思想、方法和关键技术。讨论了旋转机械故障智能诊断专家知识的获取、可视化专家知识库的建立,及由专家规则、模糊逻辑、神经网络于一体的组合智能推理机。实现了信号采集与分析、特征参数的自动识别与提取、可视化专家知识库和组合智能推理机的集成。编制了整套系统软件,开发了一套故障智能诊断装置,对旋转机械典型故障进行智能诊断,诊断出机组运行中可能存在的故障种类、故障严重程度,故障发生时间及故障治理的专家建议,即可实现故障的检测、故障分离、故障辩识、故障对策等,并具有网络化功能。 相似文献
18.
基于小波包分析和改进自适应遗传算法的齿轮故障诊断 总被引:1,自引:0,他引:1
齿轮是传动系统中最重要的元件之一,针对齿轮故障问题,在综合小波包降噪、模糊逻辑、高阶BP网络、改进自适应遗传算法各自优点的基础上,提出了一种基于小波包分析和改进自适应遗传算法的齿轮故障诊断新方法。试验证明,这种方法与传统方法相比,无论在分类精度,还是对训练总误差控制方面都具有更大的优势。 相似文献
19.