首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以Ca-Ba-Mg-Al-B-Si-O系玻璃和α-Al_2O_3粉料为原料,低温烧结玻璃/Al_2O_3系介电陶瓷材料。设计调控基质玻璃中SiO_2含量,以优化Ca-Ba-Mg-Al-B-Si-O玻璃复合氧化铝材料的烧结与介电性能。结果表明,提高SiO_2含量,玻璃/Al_2O_3材料的烧成收缩率降低,试样烧结温度升高,烧结体介电常数先增加后减小,介电损耗先减小后增加,介电性能转折点出现在SiO_2含量为60 wt%。当SiO_2含量为60 wt%时,复合材料综合性能最好,试样在875℃烧结致密,体积密度为3.10 g·cm~(-3),10 MHz频率下介电常数为8.03,介电损耗为0.0005,因此该体系材料比较适合用作LTCC封装材料。  相似文献   

2.
用固相法制备了ZnO-B_2O_3-SiO_2(ZBS)玻璃及ZBS玻璃掺杂钛酸钡基介质陶瓷,研究ZBS含量对陶瓷的密度、结构及介电温度特性的影响,研究表明:随着ZBS玻璃的增加,烧结温度逐渐降低,陶瓷晶体的结晶度逐渐减弱,平均晶粒尺寸先增大后减小,所有的样品的介温曲线都出现了双峰结构,室温介电常数先增加后减小,介电损耗逐渐减小。当ZBS含量为1 wt%时,室温介电常数为1127,介电损耗为0.015。烧结温度为1125℃,满足容温变化率(△C/C25℃≤±15%)的工作温度范围为-55~190℃。  相似文献   

3.
采用传统固相烧结法,利用X-射线衍射仪(XRD)、扫描电镜(SEM)等方法系统研究了CaTiSiO5掺杂量对(Ba,Sr) TiO3(barium strontium titanate,BST)基电容器陶瓷介电性能和微观结构的影响.结果表明:CaTiSiO5掺杂的BST陶瓷材料的介电损耗都比较小,但是对材料居里峰的移动和展宽效应都明显.随着CaTiSiO5掺杂量的增加,BST陶瓷的介电常数(εr)先增大然后减小,介电损耗(tanδ)先增大然后减小,变化不大,交流耐压强度(Eb)先增大然后减小,容温变化率先减小然后增大.当掺杂CaTiSiO5质量分数为0.8%时,BST陶瓷的综合介电性能较好:介电常数(εr)=2540,介电损耗(tanδ)=0.0036,耐压强度(Eb)=5.6 kV/mm(AC),在-30~85℃温度范围内,容温变化率为-18.9% ~ 20.6%,容温特性符合Y5S特性.  相似文献   

4.
采用固相法制备CeO2掺杂改性0.85Bi4Ti3O12-0.15LiNbO3(BTO-LN)铋层状压电陶瓷。借助于X射线衍射和扫描电子显微镜研究了CeO2掺量与BTO-LN陶瓷晶体结构和电性能的关系。结果表明:所有陶瓷样品均为单一的正交相结构;随CeO2掺量的增加,陶瓷的晶粒尺寸变大,Curie温度TC由653℃下降到617℃;CeO2掺杂提高了样品的压电性能,压电常数d33随CeO2掺量的增加先增大后减小,相对介电常数εr表现出相反的变化趋势;当CeO2的掺入量为0.75%时,样品的电性能最佳,即d33=25pC/N,机械品质因数Qm=2 895,介电损耗tanδ=0.10%,TC=617℃。  相似文献   

5.
江向平  杨帆  陈超  涂娜 《硅酸盐学报》2014,(12):1501-1506
采用固相法制备CeO2掺杂改性0.85Bi4Ti3O12-0.15LiNbO3(BTO-LN)铋层状压电陶瓷。借助于X射线衍射和扫描电子显微镜研究了CeO2掺量与BTO-LN陶瓷晶体结构和电性能的关系。结果表明:所有陶瓷样品均为单一的正交相结构;随CeO2掺量的增加,陶瓷的晶粒尺寸变大,Curie温度TC由653℃下降到617℃;CeO2掺杂提高了样品的压电性能,压电常数d33随CeO2掺量的增加先增大后减小,相对介电常数εr表现出相反的变化趋势;当CeO2的掺入量为0.75%时,样品的电性能最佳,即d33=25pC/N,机械品质因数Qm=2 895,介电损耗tanδ=0.10%,TC=617℃。  相似文献   

6.
用溶胶-凝胶法制备Li-Ba-B-Si(LBBS)助烧剂粉体,通过固相法制备LBBS助烧剂添加BaTiO_3-Na_(0.5)Bi_(0.5)TiO_3-Nb_2O_5(BT-NBT-Nb)介质陶瓷,研究LBBS助烧剂含量对BT-NBT-Nb陶瓷的烧结性能、相结构、微观结构及介温温度稳定性的影响。随着LBBS助烧剂含量的增加,介质陶瓷的烧结温度逐渐降低,平均晶粒尺寸先增大后减小,所有的样品的介温曲线都出现了双峰结构,室温介电常数先增加后减小,介电损耗逐渐减小。结果表明,添加剂含量为1.0 wt%~1.5 wt%的陶瓷样品能满足X9R特性(在-55~200℃范围内ΔC/C_(25℃)≤±15%)。当LBBS助烧剂添加量为1.0 wt%时,介质陶瓷性能最佳,室温介电常数为1266,介电损耗为0.018,烧结温度为1100℃,有望用于多层陶瓷电容器的介质陶瓷。  相似文献   

7.
笔者采用溶胶-凝胶法分别于1 300℃、1 350℃、1 400℃、1 450℃下制备了Zr_(0.1)Ti_(0.9)Ba_(0.85)Ca_(0.15)O_3+xmol%La_2O_3,其中x=0,0.2,0.6,0.8,1.0。XRD结果表明:试样呈现单一的钙钛矿结构,没有杂质相的出现La~(3+)与BCZT陶瓷形成了固溶体。SEM显示,试样的晶粒尺寸随着La~(3+)含量的增加而逐渐减小;介电常数测试温度的升高呈现先增大随后减小的趋势,而介电损耗则先减小后增大。试样的介电性能在烧结温度为1 400℃,La~(3+)掺量为0.8 mol%时有最大值。此时的最大介电常数为5 790.15,最小的介电损耗值为0.004。  相似文献   

8.
采用溶胶-凝胶一步法制备了Nd掺杂锆钛酸钡基陶瓷,通过XRD、SEM等分析检测手段对样品进行表征。研究了Nd掺杂量的不同对其微观形貌及介电性能的影响。研究表明:随着Nd掺杂量的增大,钛酸钡基陶瓷的晶粒尺寸增大,介电常数呈现出先增大后减小的变化趋势,介电损耗逐渐减小;当Nd掺杂量为摩尔分数0.07%时,陶瓷较为致密,其室温介电常数达到最大值16032,介电损耗较小为0.0046。  相似文献   

9.
采用新型溶胶凝胶制粉技术和传统陶瓷工艺相结合,对(Ba0.9Ca0.1)TiO3陶瓷进行ZrO2掺杂,对陶瓷晶相特征及铁电、介电、压电性能进行了研究。结果表明,ZrO2的加入对(Ba0.9Ca0.1)TiO3陶瓷的铁电性能略有改善,Curie峰前移和展宽,提高了介电常数ε和介电损耗tanδ,压电常数d33却降低了。当ZrO2掺杂量为0.14mol时,陶瓷的介电常数有最大值2559.43,介电损耗有最小值0.027,此时压电常数为35。  相似文献   

10.
采用新型溶胶-凝胶制粉技术和传统陶瓷工艺相结合的方法,制备了(Ba1-xCax)TiO3(x=0~0.16)陶瓷,并对陶瓷晶相特征及其介电、压电性能进行了研究。结果表明,经1250℃烧结的陶瓷由单一晶相组成,晶体具有钙钛矿结构。其介电、压电特征受CaO加入量的影响显著。当x≤0.1时,陶瓷的介电常数随CaO加入量的增加而增大,并表现出弛豫铁电体的特征,其居里点与纯BaTiO3陶瓷相差不大。当x>0.1时,陶瓷的介电常数随CaO的增加而减小,其铁电性能弱化,但介电损耗较小,介电温度稳定性较好。  相似文献   

11.
12.
13.
14.
15.
Glass fiber reinforced composites based on thermosets are the traditional materials used for many applications due to their good mechanical properties. The non-recyclability of these materials has led to the necessity to develop thermoplastic composites and industrial processes for their manufacture [1]. The present paper deals with the preparation of thermoplastic pre-pregs unidirectionally reinforced with Twarn® and their mechanical characterization.  相似文献   

16.
17.
18.
钟志光  陈强  张海峰  方永康  张震坤 《化学试剂》2007,29(4):223-225,234
采用DUO-ICP-AES同时测定精对苯二甲酸中钴、铬、铁、锰、钼、镍、钛,并对仪器的分析线选择、背景校正、入射功率、雾化器压力、辅助气流量、冷却气流量、蠕动泵转速的影响及共存元素的干扰、硝酸铯灰化助剂等因素进行了详细的研究。方法的检测限:钴0.0097 mg/L;铬0.0021 mg/L;铁0.0078 mg/L;锰0.0012 mg/L;钼0.0027 mg/L;镍0.016 mg/L;钛0.0027 mg/L,回收率和精密度分别为93.0%~99.5%和0.37%~3.2%。该方法快速简便,具有良好的精密度和准确度,适用于进出口精对苯二甲酸的日常检验。  相似文献   

19.
The development of new methods for preparing polyfunctional organometallics has made a broad range of such reagents available for various transition metal-catalyzed cross-couplings. An overview of the most general preparation methods will be presented. Applications to practical cross-coupling procedures will be covered, emphasizing the functional group compatibility and the reaction scope.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号