首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid-state compatibility and melting relationships in the subsystem Al2O3—MgAl2O4—CaAl4O7 were studied by firing and quenching selected samples located in the isopletal section (CaO·MgO)—Al2O3. The samples then were examined using X-ray diffractomtery, optical microscopy, and scanning and transmission electron microscopies with wavelength- and energy-dispersive spectroscopies, respectively. The temperature, composition, and character of the ternary invariant points of the subsystem were established. The existence of two new ternary phases (Ca2Mg2Al28O46 and CaMg2Al16O27) was confirmed, and the composition, temperature, and peritectic character of their melting points were determined. The isothermal sections at 1650°, 1750°, and 1840°C of this subsystem were plotted, and the solid-solution ranges of CaAl4O7, CaAl12O19, MgAl2O4, Ca2Mg2Al28O46, and CaMg2Al16O27 were determined at various temperatures. The experimental data obtained in this investigation, those reported in Part I of this work, and those found in the literature were used to establish the projection of the liquidus surface of the ternary system Al2O3—MgO—CaO.  相似文献   

2.
A complete critical evaluation and thermodynamic modeling of the phase diagrams and thermodynamic properties of the MgO–Al2O3–CrO–Cr2O3 system at 1 bar total pressure are presented. Optimized equations for the thermodynamic properties of all phases are obtained which reproduce all available thermodynamic and phase equilibrium data within experimental error limits from 25°C to above the liquidus temperatures at all compositions and oxygen partial pressures. The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. The database of the model parameters can be used along with software for Gibbs energy minimization in order to calculate any type of phase diagram section.  相似文献   

3.
4.
The XRD patterns at ambient temperature and at 1500°C showed that the spinel in the Al2O3–MgO castables fired at 1500°C for 3 h has the higher peak intensity, compared to those in Al2O3–spinel castables; the interplanar distance in the set (311) is 2.43 Å for the spinel in Al2O3–MgO castables as well as the spinels in Al2O3–spinel castables using spinels containing 73, 90, and 94 wt% Al2O3, respectively. The corresponding alumina contents of the spinels in these castables were estimated to be around 75 wt%. The smaller grain size of the spinel in Al2O3–MgO castables compared to that in Al2O3–spinel castables is evidenced by the recrystallization of the in situ spinel only occurring in Al2O3–MgO castables as revealed by the XRD patterns at ambient temperature and at 1500°C. The larger amount and smaller grain size of the in situ spinel in the matrix mostly account for the better slag resistance of Al2O3–MgO castables, compared to Al2O3–spinel castables.  相似文献   

5.
In this work, the liquidus of synthetic CaO–SiO2–MgO–Al2O3–CrO x slags is evaluated in the industrially relevant compositional domain. Equilibrium experiments are carried out at 1500°C and partial oxygen pressure ( p O2) 10−11.04 atm, and at 1600°C and p O2=10−10.16 and 10−9.36 atm. The studied basicities (CaO/SiO2) are 1.2 and 0.5. Al2O3 levels range from 0 to 30 wt%. Oversaturated liquid is sampled and phase relations are measured with quantitative electron probe microanalysis–wavelength dispersive spectroscopy (EPMA–WDS). The results are compared with the commercially available FactSage thermodynamic databases. Qualitative agreement is always obtained. Also a good quantitative agreement is found at the higher basicity, especially for the spinel liquidus. A minor but systematic deviation can be observed for the eskolaite liquidus. At the lower basicity, the calculated phase diagram deviates strongly from the experimental results, probably due to missing ternary interactions in the database.  相似文献   

6.
Compatibility relations of Al2O3 in the quaternary system Al2O3–CaO–MgO–SiO2 were studied by firing and quenching followed by microstructural and energy-dispersive X-ray examination. A projection of the liquidus surface of the primary phase volume of Al2O3 was constructed in terms of the CaO, SiO2, and MgO contents of the mixtures recalculated to 100 wt%. Two invariant points, where four solids coexist with a liquid phase, were defined, and the positions of the isotherms were tentatively established. The effect of SiO2, MgO, and CaO impurities on Al2O3 growth also was studied.  相似文献   

7.
8.
Three distinctly different microstructures of silica (as quartz and crystobalite), alumina, enstatite, and celsian, were found to develop in a 60SiO2–20MgO–10Al2O3–10BaO glass ceramic. At 1010°C, growth of wormy fibrillar crystals was observed, indicating that crystal growth was diffusion controlled. At the intermediate temperature of 1080°C, a coarse cellular microstructure developed with multiple spherical particles nucleated on their surfaces and in the surrounding glass. At 1200°C, the glass crystallizes in a denderitic morphology but the dendrites were actually fragmented into multiple cube-shaped enstatite crystals, indicating a transition to interface-controlled growth. The crystals coarsen with time but maintain their order along the dendrite skeletons.  相似文献   

9.
Results are presented of a study of phase equilibria among crystalline and liquid phases in the quaternary system CaO–MgO-Al2O3–SiO2 at Al2O3 contents greater than 35%. Equilibrium diagrams shown are for the five triangular joins CaAl2Si2O3-Ca2Al2SiO7-MgAl2O4, Ca2Al2SiO7-MgAl2O4-Al2O3, CaAl2Si2O8-MgO-Al2O3, CaAl2Si2O8-Mg2SiO4-MgAl2O4, and CaAl2Si2O8-MgO-Mg2SiO4. The composition and nature of the four quaternary peritectic points and the relationships of univariant lines and primary phase volumes are discussed.  相似文献   

10.
The system CaO–MgO–Al3O3 has been assessed with the Calphad technique using a computerized optimization procedure called parrot . The rather meager experimental information, mainly on liquidus relations, is described reasonably well, but the lack of data, especially on solid-phase relations, implies that the present assessment should be regarded as provisional. The system contains one stable ternary phase with the stoichiometry 3CaO·2Al2O3·MgO.  相似文献   

11.
12.
The phase relations at a temperature below "subsolidus" in the system Al2O3–B2O3–Nd2O3 are reported. Specimens were prepared from various compositions of Al2O3, B2O3, and Nd2O3 of purity 99.5%, 99.99%, and 99.9%, respectively, and fired at 1100°C. There are six binary compounds and one ternary compound in this system. The ternary compound, NdAl3(BO3)4 (NAB), has a phase transition at 950°C ± 15°C. The high-temperature form of NAB has a second harmonic generation (SHG) efficiency of KH2PO4 (KDP) of the order of magnitude of the form which has been used as a good self-activated laser material, and the low-temperature form of NAB has no SHG efficiency.  相似文献   

13.
Subsolidus phase relationships in the Ga2O3–Al2O3–TiO2 system at 1400°C were studied using X-ray diffraction. Phases present in the pseudoternary system include TiO2 (rutile), Ga2−2 x Al2 x O3 ( x ≤0.78 β-gallia structure), Al2−2 y Ga2 y O3 ( y ≤0.12 corundum structure), Ga2−2 x Al2 x TiO5 (0≤ x ≤1 pseudobrookite structure), and several β-gallia rutile intergrowths that can be expressed as Ga4−4 x Al4 x Ti n −4O2 n −2 ( x ≤0.3, 15≤ n ≤33). This study showed no evidence to confirm that aluminum substitution of gallium stabilizes the n =7 β-gallia–rutile intergrowth as has been mentioned in previous work.  相似文献   

14.
The system MgO–Al2O3–2CaO·SiO2 comprises a plane through the tetrahedron CaO–MgO–Al2O3–SiO2. A total of 108 compositions were prepared having an alumina content below the line joining 2CaO·Al2O3SiO2 (gehlenite) and MgO·Al2O3 (spinel). Quenching experiments were carried out on 96 of these compositions at temperatures up to 1590°C. Three binary eutectic systems and two ternary eutectic systems are described. Compositions on this plane are of significance in an investigation of the constitution of basic refractory clinkers made from Canadian dolomitic magnesites. They also concern the compositions of certain blast furnace slags.  相似文献   

15.
The sintering of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler is terminated due to the crystallization of Al4B2O9 in the glass. The densification of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler using pressureless sintering was accomplished by lowering the sintering temperature of the composite. The sintering temperature was lowered by the addition of small amounts of alkali metal oxides to the MgO–B2O3–Al2O3 glass system. The resultant composite has a four-point bending strength of 280 MPa, a coefficient of thermal expansion (RT—200°C) of 4.4 × 10−6 K−1, a dielectric constant of 6.0 at 1 MHz, porosity of approximately 1%, and moisture resistance.  相似文献   

16.
Electroconductive Al2O3–NbN ceramic composites were prepared by hot pressing. Dense sintered bodies of ball-milled Al2O3–NbN composite powders were obtained at 1550°C and 30 MPa for 1 h under a nitrogen atmosphere. The bending strength and fracture toughness of the composites were enhanced by incorporating niobium nitride (NbN) particles into the Al2O3 matrix. The electrical resistivity of the composites decreased with increasing amount of NbN phase. For a 25 vol% NbN–Al2O3 composite, the values of bending strength, fracture toughness, Vickers hardness, and electrical resistivity were 444.2 MPa, 4.59 MPa·m1/2, 16.62 GPa, and 1.72 × 10−2Ω·cm, respectively, making the composite suitable for electrical discharge machining.  相似文献   

17.
The wettability of binary and ternary glasses belonging to SiO2–Al2O3–ZrO2 diagram has been studied using the sessile drop technique at 1750° and 1800°C. The ternary SiO2–Al2O3–ZrO2 (90–5–5 wt%) glass has proved to be well appropriated as a molybdenum oxidation barrier coating. The addition of 5 wt% of MoO2 slightly improves its wettablity at higher temperatures without affecting its oxidation barrier properties. The Mo comes into the glass network as a mixture of Mo5+, Mo4+, and Mo6+. After oxidation at 1000°C in oxygen atmosphere, the molybdenum remains in the glass network as Mo6+.  相似文献   

18.
Solid-state compatibility and melting relations of MgAl2O4 in the quaternary system Al2O3–CaO–MgO–SiO2 were studied by firing and quenching selected samples located in the 65 wt% MgAl2O4, plane followed by microstructural and energy dispersive X-ray analysis. A projection of the liquidus surface of the primary crystallization volume of MgAl2O4 was constructed from CaO, SiO2 and exceeding Al2O3, not involved in stoichiometric MgAl2O4 formation; those three amounts were recalculated to 100 wt%. The temperature and character of six invariant points, where four solids co-exist with a liquid phase, were defined. One maximum point was localized and the positions of the isotherms were tentatively established. The effect of CaO, SiO2, and Al2O3 impurities on the high temperature behavior of spinel materials was also discussed.  相似文献   

19.
Fused aluminum oxide containing a small amount of nitrogen (as added aluminum nitride) showed X-ray powder diffraction patterns similar to the δ-alumina obtained from the calcination of alumina mouohydrate in dry air. About 1% nitrogen was adequate for complete conversion of the α phase to the δ phase. A fused mixture containing 3.9% nitrogen showed a powder pattern identical to lithium ζ-alumina.  相似文献   

20.
Phase equilibria in the system HfO2–Y2O3–CaO were studied in the temperature range 1250° to 2850°C by both experimental methods (X-ray phase analysis at 20° to 2000°C, petrography, annealing and quenching, differential thermal analysis in He at temperatures to 2500°C, thermal analysis in air using a solar furnace at temperatures to 3000°C, and electron microprobe X-ray analysis) and theoretical means (development of a mathematical model for the liquidus surface by means of the reduced polynomial method). Phase equilibria were determined by the structure of the restricting binary systems. No ternary compounds were found. The liquidus was characterized by the presence of six four-phase, invariant equilibria. Solid solutions were based on monoclinic (M), tetragonal (T), and cubic (F) modifications of HfO2; C and H forms of Y2O3; CaO; and CaHfO3 that crystallized in two polymorphous modifications, namely, the cubic and rhombic perovskite-type structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号