首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decreased energy use is crucial for achieving sustainable energy solutions. This paper presents current and possible future electricity use in Swedish industry. Non-heavy lines of business (e.g. food, vehicles) that use one-third of the electricity in Swedish industry are analysed in detail. Most electricity is used in the support processes pumping and ventilation, and manufacturing by decomposition. Energy conservation can take place through e.g. more efficient light fittings and switching off ventilation during night and weekends. By energy-carrier switching, electricity used for heat production is replaced by e.g. fuel. Taking technically possible demand-side measures in the whole lines of business, according to energy audits in a set of factories, means a 35% demand reduction. A systems analysis of power production, trade, demand and conservation was made using the MODEST energy system optimisation model, which uses linear programming and considers the time-dependent impact on demand for days, weeks and seasons. Electricity that is replaced by district heating from a combined heat and power (CHP) plant has a dual impact on the electricity system through reduced demand and increased electricity generation. Reduced electricity consumption and enhanced cogeneration in Sweden enables increased electricity export, which displaces coal-fired condensing plants in the European electricity market and helps to reduce European CO2 emissions. Within the European emission trading system, those electricity conservation measures should be taken that are more cost-efficient than other ways of reducing CO2 emissions. The demand-side measures turn net electricity imports into net export and reduce annual operation costs and net CO2 emissions due to covering Swedish electricity demand by 200 million euros and 6 Mtonne, respectively. With estimated electricity conservation in the whole of Swedish industry, net electricity exports would be larger and net CO2 emissions would be even smaller.  相似文献   

2.
The topic of this article is the analysis of the interplay between daily carbon, electricity and gas price data with the European Union Emission Trading System (EU ETS) for CO2 emissions. In a first step we have performed Granger causality tests for Phase I of the EU ETS (January 2005 until December 2007) and the first year of Phase II of the EU ETS (2008). The analysis includes both spot and forward markets—given the close interactions between the two sets of markets. The results show that during Phase I coal and gas prices, through the clean dark and spark spread, impacted CO2 futures prices, which in return Granger caused electricity prices. During the first year of the Phase II, the short-run rent capture theory (in which electricity prices Granger cause CO2 prices) prevailed. On the basis of the qualitative results of the Granger causality tests we obtained the formulation testable equations for quantitative analysis. Standard OLS regressions yielded statistically robust and theoretically coherent results.  相似文献   

3.
In this study, electricity generation associated CO2 emissions and fuel-specific CO2 emission factors are calculated based on the IPCC methodology using the data of fossil-fueled power plants that ran between 2001 and 2008 in Turkey. The estimated CO2 emissions from fossil-fueled power plants between 2009 and 2019 are also calculated using the fuel-specific CO2 emission factors and data on the projected generation capacity of the power plants that are planned to be built during this period. Given that the total electricity supply (planned+existing) will not be sufficient to provide the estimated demand between 2011 and 2019, four scenarios based on using different fuel mixtures are developed to overcome this deficiency. The results from these scenarios show that a significant decrease in the amount of CO2 emissions from electricity generation can be achieved if the share of the fossil-fueled power plants is lowered. The Renewable Energy Scenario is found to result in the lowest CO2 emissions between 2009 and 2019. The associated CO2 emissions calculated based on this scenario are approximately 192 million tons lower than that of the Business As Usual Scenario for the estimation period.  相似文献   

4.
This paper presents a newly established database of the European power plant infrastructure (power plants, fuel infrastructure, fuel resources and CO2 storage options) for the EU25 member states (MS) and applies the database in a general discussion of the European power plant and natural gas infrastructure as well as in a simple simulation analysis of British and German power generation up to the year 2050 with respect to phase-out of existing generation capacity, fuel mix and fuel dependency. The results are discussed with respect to age structure of the current production plants, CO2 emissions, natural gas dependency and CO2 capture and storage (CCS) under stringent CO2 emission constraints.  相似文献   

5.
The development towards more energy efficient buildings, as well as the expansion of district heating (DH) networks, is generally considered to reduce environmental impact. But the combined effect of these two progressions is more controversial. A reduced heat demand (HD) due to higher energy efficiency in buildings might hamper co-production of electricity and DH. In Sweden, co-produced electricity is normally considered to displace electricity from less efficient European condensing power plants. In this study, a potential HD reduction due to energy efficiency measures in the existing building stock in the Swedish city Linköping is calculated. The impact of HD reduction on heat and electricity production in the Linköping DH system is investigated by using the energy system optimisation model MODEST. Energy efficiency measures in buildings reduce seasonal HD variations. Model results show that HD reductions primarily decrease heat-only production. The electricity-to-heat output ratio for the system is increased for HD reductions up to 30%. Local and global CO2 emissions are reduced. If co-produced electricity replaces electricity from coal-fired condensing power plants, a 20% HD reduction is optimal for decreasing global CO2 emissions in the analysed DH system.  相似文献   

6.
The objective of the study is to analyse the conditions for connection of residential buildings in heat sparse areas to district heating systems in order to increase electricity production in municipal combined heat and power plants. The European electricity market has been assumed to be fully deregulated. The relation between connection of heat sparse areas, increased electricity and heat production as well as electricity prices, fuel prices and emissions rights is investigated. The results of the study show that there is potential to expand the district heating market to areas with lower heat concentrations in the cities of Gävle, Sandviken and Borlänge in Sweden, with both economic and environmental benefits. The expansion provides a substantial heat demand of approximately 181 GWh/year, which results in an electricity power production of approximately 43 GWh/year. Since the detached and stand-alone houses in the studied heat sparse areas have been heated either by oil boiler or by direct electricity, connection to district heating also provides a substantial reduction in emissions of CO2. The largest reductions in CO2 emissions are found to be 211 ktonnes/year assuming coal-fired condensing power as marginal electricity production. Connection of heat sparse areas to district heating decrease the system costs and provide a profitability by approximately 22 million EURO/year for the studied municipalities if the price of electricity is at a European level, i.e. 110 EURO/MWh. Sensitivity analysis shows, among other things, that a strong relation exists between the price of electricity and the profitability of connecting heat sparse areas to district heating systems.  相似文献   

7.
This paper discusses the opportunities that exist for reducing greenhouse gases (GHG) emissions by switching from coal to gas‐fired units in electricity generation, ‘forced’ by the European Union Greenhouse Gas Emission Trading Scheme (EU ETS) price level of CO2. It attempts to find efficient GHG cost profiles leading to a reasonable GHG emission reduction. In a methodological demonstration case (an electricity generation system consisting of two coal and two gas‐fired power plants), we demonstrate how a GHG emission cost can lead to a certain switch of power plants with an accompanying GHG emission reduction. This GHG emission cost is dependent on the load level. The switching point method is applied to an electricity generation system similar to the Belgian one. It is found that the greatest opportunities for GHG emission reductions are situated in the summer season. By switching only the coal‐fired units with the combined cycle (CC) gas‐fired units, a significant GHG emission reduction is possible at a modest cost. With the simulation tool E‐Simulate, the effect of a GHG emission cost in the summer season is investigated. A potential GHG emission reduction of 9.5% in relation to the case where there is no cost linked to GHG emission is possible at a relative low cost. When implementing a GHG cost in winter season, a smaller GHG reduction occurs while costs are higher. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Current legislation on power production from nuclear energy in Germany defines certain remaining quantities of permitted electricity production for nuclear power plants. These quantities are defined for each nuclear power plant and are measured in TWh. In the discussion about climate protection and market trend of electricity prices, it is regularly stated by policy makers that the nuclear phase-out will result in an increase in electricity prices and CO2 emissions. As a consequence a revision is proposed, especially from the Liberals (FDP) and Conservatives (CDU). The following article discusses this issue analysing the different options investors and operators under different scenarios have. It shows firstly that both emissions and power prices can indeed increase, and secondly that the mere discussion about potentially reversing the phasing-out decision can lead to an increase in electricity prices as investment behaviour may change based on expectations regarding future regulation. I conclude that – ceteris paribus – the nuclear phase-out is likely to result in an increase in CO2 emissions and prices.  相似文献   

9.
As of November 2008, a new market, the CO2 free electricity market, started pilot trading within the Japan Electric Power Exchange (JEPX). The electricity in this market comes from renewable resources, nuclear or fossil thermal power with CDM credits. The demanders of the CO2 free electricity are supposed to be the power companies with high emission rates. In this paper, we analyzed the effects of the new market by using a multi-agent based model to simulate the markets. From our simulation results, we found that the demander, under strict CO2 emission regulations, tends to buy more electricity from the new CO2 free market even though the price of this market is higher than that of the normal power exchange market. Suppliers with hydro or nuclear power plants only sell their electricity to the CO2 free market, and suppliers with coal power plants also enter this market (with CDM credits). The media and peak demands in the normal market are met mainly by electricity from LNG power plants. We also compared the results from the multi-agent approach with those from the least-cost planning approach and found that the results of the two methods were similar.  相似文献   

10.
This paper investigates the impact of the economic recession on CO2 emissions in the European power sector, during the years 2008 and 2009. Three main determinants of the power sector’s emissions are identified: the demand for electricity, the CO2 price, and fuel prices. A counterfactual scenario has been set up for each of these, i.e., what these parameters would have been if not affected by the recession. A simulation model of the European power sector is then employed, comparing a historical reference simulation (taking the parameters as actually occurred) with the counterfactual scenarios. The lower electricity demand (due to the recession) is shown to have by far the largest impact, accounting for an emission reduction of about 175 Mton. The lower CO2 price (due to the recession) resulted in an increase in emissions by about 30 Mton. The impact of fuel prices is more difficult to retrieve; an indicative reduction of about 17 Mton is obtained, mainly as a consequence of the low gas prices in 2009. The simulated combined impact of the parameters results in an emission reduction of about 150 Mton in the European power sector over the years 2008 and 2009 as a consequence of the recession.  相似文献   

11.
This study analyzes how the substitution of fossil fuels for nuclear power due to the shutdown of nuclear power plants after the Tohoku Earthquake affects electricity consumption and greenhouse gas emissions in Japan. Results indicate that Japan generated 4.3 million metric tons (or 0.3%, with a 95% confidence interval) of additional CO2 emissions in 2011 following the earthquake. The increase in CO2 emissions stemmed from the combined effects of decreased electricity consumption due to energy conservation efforts and the substitution of fossil fuels for nuclear power following the Tohoku Earthquake. Results also show considerable spatial variation in the impacts of the earthquake on net CO2 emissions. A majority of the prefectures (40 of 47 prefectures, or 85%) were predicted to experience higher CO2 emissions after the Tohoku Earthquake while the remaining (7 prefectures) were predicted to experience lower CO2 emissions. Our findings suggest that Japan and countries under similar risks may want to reformulate energy policy by emphasizing utilization of diverse power and energy sources, including more renewable energy production and electricity conservation. The policy reform should also consider spatial variation in the combined effects of reduced reliance on nuclear power and increased CO2 conversion factors.  相似文献   

12.
Hydrogen is currently receiving attention as a possible cross-sectoral energy carrier with the potential to enable emission reductions in several sectors, including hard-to-abate sectors. In this work, a techno-economic optimization model is used to evaluate the competitiveness of time-shifting of electricity generation using electrolyzers, hydrogen storage and gas turbines fueled with hydrogen as part of the transition from the current electricity system to future electricity systems in Years 2030, 2040 and 2050. The model incorporates an emissions cap to ensure a gradual decline in carbon dioxide (CO2) levels, targeting near-zero CO2 emissions by Year 2050, and this includes 15 European countries.The results show that hydrogen gas turbines have an important role to play in shifting electricity generation and providing capacity when carbon emissions are constrained to very low levels in Year 2050. The level of competitiveness is, however, considerably lower in energy systems that still allow significant levels of CO2 emissions, e.g., in Year 2030. For Years 2040 and 2050, the results indicate investments mainly in gas turbines that are partly fueled with hydrogen, with 30–77 vol.-% hydrogen in biogas, although some investments in exclusively hydrogen-fueled gas turbines are also envisioned. Both open cycle and combined cycle gas turbines (CCGT) receive investments, and the operational patterns show that also CCGTs have a frequent cyclical operation, whereby most of the start-stop cycles are less than 20 h in duration.  相似文献   

13.
Reduction of the emissions of greenhouses gases, increasing the share of renewable energy sources (RES) in the energy balance, increasing electricity production from renewable energy sources and decreasing energy dependency represent the main goals of all current strategies in Europe. Biomass co-firing in large coal-based thermal power plants provides a considerable opportunity to increase the share of RES in the primary energy balance and the share of electricity from RES in gross electricity consumption in a country. Biomass-coal co-firing means reducing CO2 and SO2, emissions and it may also reduce NOx emissions, and also represents a near-term, low-risk, low-cost and sustainable energy development. Biomass-coal co-firing is the most effective measure to reduce CO2 emissions, because it substitutes coal, which has the most intensive CO2 emissions per kWh electricity production, by biomass, with a zero net emission of CO2. Biomass co-firing experience worldwide are reviewed in this paper. Biomass co-firing has been successfully demonstrated in over 150 installations worldwide for most combinations of fuels and boiler types in the range of 50–700 MWe, although a number of very small plants have also been involved. More than a hundred of these have been in Europe. A key indicator for the assessment of biomass co-firing is intrduced and used to evaluate all available biomass co-firing technologies.  相似文献   

14.
Considering natural gas (NG) to be the most promising low-carbon option for the energy industry, large state owned companies in China have established numerous coal-based synthetic natural gas (SNG) projects. The objective of this paper is to use a system approach to evaluate coal-derived SNG in terms of life-cycle energy efficiency and CO2 emissions. This project examined main applications of the SNG and developed a model that can be used for evaluating energy efficiency and CO2 emissions of various fuel pathway systems. The model development started with the GREET model, and added the SNG module and an end-use equipment module. The database was constructed with Chinese data. The analyses show when the SNG are used for cooking, power generation, steam production for heating and industry, life-cycle energies are 20–108% higher than all competitive pathways, with a similar rate of increase in life-cycle CO2 emissions. When a compressed natural gas (CNG) car uses the SNG, life-cycle CO2 emission will increase by 150–190% compared to the baseline gasoline car and by 140–210% compared to an electric car powered by electricity from coal-fired power plants. The life-cycle CO2 emission of SNG-powered city bus will be 220–270% higher than that of traditional diesel city bus. The gap between SNG-powered buses and new hybrid diesel buses will be even larger—life-cycle CO2 emission of the former being around 4 times of that of the latter. It is concluded that the SNG will not accomplish the tasks of both energy conservation and CO2 reduction.  相似文献   

15.
The paper presents a view into the long term future of fossil-fuelled power generation in the European Union, based on a number of alternative scenarios for the development of the coal, natural gas and CO2 markets, and the penetration of renewable and nuclear technologies. The new fossil fuelled capacity needed and the likely technology mix are estimated using a cost optimisation model based on the screening curve method, taking into consideration the rate of retirement of the current power plant fleet, the capacity already planned or under construction and the role of carbon capture and storage technologies. This analysis shows that measures to increase both non-fossil-fuel-based power generation and the price of CO2 are necessary to drive the composition of the European power generation capacity so that the European policy goal of reducing greenhouse gas emissions is achieved. Meeting this goal will however require a high capital investment for the creation of an optimal fossil fuel power plant technology mix.  相似文献   

16.
The European Union has established challenging targets for the share of renewable energies to be achieved by 2020; for Spain, 20% of the final energy consumption must be from renewable sources at such time. The aim of this paper is the analysis of the consequences for the electricity sector (in terms of excess cost of electricity, investment requirements, land occupation, CO2 emissions and overcapacity of conventional power) of several possibilities to comply with the desired targets. Scenarios are created from different hypotheses for energy demand, biofuel share in final energy in transport, contribution of renewables for heating and cooling, renewable electricity generation (generation mix, deployment rate, learning curves, land availability) and conventional power generation (lifetime of current installations, committed deployment, fossil fuel costs and CO2 emissions cost). A key input in the estimations presented is the technical potential and the cost of electricity from renewable sources, which have been estimated in previous, detailed studies by the present authors using a methodology based on a GIS (Geographical Information System) and high resolution meteorological data. Depending on the scenario, the attainment of the targets will lead to an increase in the cost of electricity from 19% to 37% with respect to 2007.  相似文献   

17.
The Electric Vehicle (EV) as a clean alternative to Classic Vehicle that use fossil fuels is promoted as an immediate solution to improve the quality parameters of the environment related to the transport sector. The transition to clean electrified mobility must be considered from the sustainability spectrum, and the planning of a strategy related to the implementation of electric vehicles implies, from the beginning, providing clean energy conditions to go toward a green-to-green paradigm. It should be noted that the successful implementation of the “green electro mobility” concept depends heavily on the green energy supply solutions of green electric vehicle, so Electric Vehicle Charging Stations (EV-CS) should be powered by electricity generation systems based on green resources. This research article has as main objective the environmental impact assessment from the perspective of CO2 emissions embedded in green stand-alone energy systems and the estimation of the environmental benefits of their implementation in the power supply of EV-CS from the perspective of avoided CO2 emissions compared to the classic electricity supply grid. The results indicate that the green energy systems represent feasible solutions for the independent energy support of electric vehicle charging stations, being able to supply electricity based on on-site available 100% alternative energy sources. Related to 1 kWh of electricity, the CO2 emissions embedded in these systems represent on average 11.40% of the CO2 emissions of the electricity supplied through the grid at European level and on average 7.10% of the CO2 emissions of the electricity supplied through the grid worldwide. Results also show that the average price of 1kWh of electricity generated by the analyzed systems is 4.3 times higher than the average unit price of the European Union grid energy, but this indicator must be correlated with the kgCO2/kWh cost savings compared to the electricity production from classic power plants.  相似文献   

18.
The Global MARKAL-Model (GMM), a multi-regional “bottom-up” partial equilibrium model of the global energy system with endogenous technological learning, is used to address impacts of internalisation of external costs from power production. This modelling approach imposes additional charges on electricity generation, which reflect the costs of environmental and health damages from local pollutants (SO2, NOx) and climate change, wastes, occupational health, risk of accidents, noise and other burdens. Technologies allowing abatement of pollutants emitted from power plants are rapidly introduced into the energy system, for example, desulphurisation, NOx removal, and CO2 scrubbers. The modelling results indicate substantial changes in the electricity production system in favour of natural gas combined cycle, nuclear power and renewables induced by internalisation of external costs and also efficiency loss due to the use of scrubbers. Structural changes and fuel switching in the electricity sector result in significant reduction of emissions of both local pollution and CO2 over the modelled time period. Strong decarbonisation impact of internalising local externalities suggests that ancillary benefits can be expected from policies directly addressing other issues then CO2 mitigation. Finally, the detailed analysis of the total generation cost of different technologies points out that inclusion of external cost in the price of electricity increases competitiveness of non-fossil generation sources and fossil power plants with emission control.  相似文献   

19.
The Logarithmic Mean Divisia Index (LMDI) method of complete decomposition is used to examine the role of three factors (electricity production, electricity generation structure and energy intensity of electricity generation) affecting the evolution of CO2 emissions from electricity generation in seven countries. These seven countries together generated 58% of global electricity and they are responsible for more than two-thirds of global CO2 emissions from electricity generation in 2005. The analysis shows production effect as the major factor responsible for rise in CO2 emissions during the period 1990–2005. The generation structure effect also contributed in CO2 emissions increase, although at a slower rate. In contrary, the energy intensity effect is responsible for modest reduction in CO2 emissions during this period. Over the 2005–2030 period, production effect remains the key factor responsible for increase in emissions and energy intensity effect is responsible for decrease in emissions. Unlike in the past, generation structure effect contributes significant decrease in emissions. However, the degree of influence of these factors affecting changes in CO2 emissions vary from country to country. The analysis also shows that there is a potential of efficiency improvement of fossil-fuel-fired power plants and its associated co-benefits among these countries.  相似文献   

20.
The aim of this paper is to present the current status of the coal‐fired power sector in an enlarged EU (EU‐15 plus EU member candidate states) in relation with the main topics of the European Strategy for the energy production and supply. It is estimated that 731 thermoelectric units, larger than 100 MWe, are operating nowadays, and their total installed capacity equals to 200.7 GWe. Coal contribution to the total electricity generation with reference to other fuel sources, is by far more intensive in the non‐EU part (EU member candidate states), compared to the EU member states. It is expected that even after the enlargement, the European Union will strongly being related to coal. Enlargement will bring additional factors into play in order to meet the requirements of rising consumption, growing demand for conventional fuels and increasing dependence on imports. Besides the technology, boiler size, efficiency, age and environmental performance will determine the necessities of the coal‐fired power sector in each country. Depending on the case, lifetime extension measures in operating coal‐fired power plants or clean coal technologies can play an important role towards the energy sector restructuring. Low efficiency values in the non‐EU coal‐fired units and heavily aged power plants in EU countries will certainly affect decisions in favour of upgrading or reconstruction. The overall increase of efficiency, the reduction of harmful emissions from generating processes and the co‐combustion of coal with biomass and wastes for generating purposes indicate that coal can be cleaner and more efficient. Additionally, plenty of rehabilitation projects based on CCT applications, have already been carried out or are under progress in the EU energy sector. The proclamations of the countries' energy policies in the coming decades, includes integrated renovation concepts of the coal‐fired power sector. Further to the natural gas penetration in the electricity generation and CO2 sequestration and underground storage, the implementation of CCT projects will strongly contribute to the reduction of CO2 emissions in the European Union, according to the targets set in the Kyoto protocol. In consequence, clean coal technologies can open up new markets not only in the EU member candidate states, but also in other parts of the world. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号