首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The syndrome of apparent mineralocorticoid excess (AME) is a heritable form of hypertension in which cortisol acts as a potent mineralocorticoid. The type I variant results in a severe clinical and biochemical phenotype and arises because of mutations in the gene encoding the type 2 isozyme of 11beta-hydroxysteroid dehydrogenase (11beta-HSD2), an enzyme responsible for the peripheral inactivation of cortisol to cortisone. Only mild abnormalities of cortisol metabolism have been found in the type II variant of AME, suggesting that it may be a separate gene defect. In an extensive consanguineous Sardinian pedigree affected with "type II" AME, a novel homozygous point mutation (C945T) was found in the human 11beta-HSD2 gene in four affected individuals. Thirteen family members were heterozygous for the resultant R279C amino acid substitution. The LOD score of linkage of the mutation to the disease was 3.23. Expression of the 11beta-HSD2 mutant cDNA resulted in an enzyme with reduced maximum velocity, but similar substrate affinity, compared with activity of the wild-type cDNA. Affected individuals were >30 years of age and had both mineralocorticoid hypertension and evidence of impaired metabolism of cortisol to cortisone. The heterozygote state was phenotypically normal but was associated with subtle defects in cortisol metabolism. AME represents a spectrum of mineralocorticoid hypertension with severity reflecting the underlying genetic defect in the 11beta-HSD2 gene; classification into distinct subtypes is inappropriate. Hypertensive populations should be screened to identify the prevalence of milder defects in 11beta-HSD2 in patients currently labeled as having "essential" hypertension.  相似文献   

2.
CONVERSION OF CORTISOL TO CORTISONE: 11 beta-Hydroxysteroid dehydrogenase (11 beta-HSD) is a microsomal enzyme complex which, in humans, catalyses the interconversion between biologically active cortisol and inactive cortisone. This prereceptor signalling mechanism is essential for maintaining the aldosterone selectivity of the intrinsically non-specific mineralocorticoid receptor and for modulating glucocorticoid access to the glucocorticoid receptor. Apparent mineralocorticoid excess (AME) is a syndrome of severe low-renin mineralocorticoid hypertension associated with marked hypokalaemia which arises from a congenital deficiency of 11 beta-HSD. In AME patients, therefore, it is cortisol and not aldosterone which behaves as a potent mineralocorticoid. ISOFORMS OF 11 BETA-HSD: Two isoforms of human 11 beta-HSD have now been characterized and cloned. The type 1 isoform (11 beta-HSD1) is a low-affinity reduced nicotinamide adenine dinucleotide phosphate (NADP) dependent dehydrogenase-oxoreductase which is expressed in predominantly glucocorticoid target tissues and the encoding sequence of which is normal in patients with AME. In contrast, the type 2 isoform (11 beta-HSD2) is a high-affinity NADP-dependent unidirectional dehydrogenase which is expressed in placenta and mineralocorticoid target tissues such as renal collecting ducts and distal colonic epithelia. Exon- and intron-specific polymerase chain reaction amplification of the 11 beta-HSD2 gene from genomic DNA from members of a consanguinous kindred with AME consistently revealed a single missense mutation (C1228T) in two affected sibs and twin stillbirths. This mutation in codon 374 of exon 5 of the 11 beta-HSD2 gene creates an inframe premature stop (TGA) and, as such, results in a truncated 11 beta-HSD2 protein lacking the carboxyl-terminal proline-rich 32 amino acids. In keeping with an autosomal recessive mode of inheritance, both parents were phenotypically and biochemically normal but were heterozygous for this mutation. Unique to this kindred were expression analyses of the native mutant 11 beta-HSD2 enzyme in the stillbirth-affected placenta, which was almost completely devoid of NADP-dependent 11 beta-dehydrogenase activity. Immunohistochemical and Western blot analyses revealed the absence of 11 beta-HSD2 protein using antisera raised against synthetic peptide sequences corresponding either to the carboxyl terminus or other domains of the enzyme. MISSENSE MUTATION: In this kindred with AME, congenital deficiency of 11 beta-HSD activity is due to a single missense mutation in exon 5 of the 11 beta-HSD2 gene. Simultaneous studies by two other groups have similarly revealed no gross deletions or rearrangements of the 11 beta-HSD2 gene, but have described a number of single point mutations and oligonucleotide deletions in exons 3, 4 and 5, and adjacent to a splice site in intron 3. Recombinant expression analysis of site-directed mutant 11 beta-HSD2 complementary DNA constructs suggests a correlation between the predicted severity of these mutations and the biochemical and clinical phenotype. AME AS A CAUSE OF HYPERTENSION: The mutations in the 11 beta-HSD2 gene, together with those currently being sought by us for other kindreds with AME, establishes AME as a monogenic cause of human hypertension and will provide insight into the structure-function relationships of this important enzyme.  相似文献   

3.
In the rat, the enzyme 11beta-hydroxysteroid dehydrogenase 2 (11betaHSD2) converts the glucocorticoid corticosterone into receptor-inactive 11-dehydrocorticosterone, thereby allowing preferential access of aldosterone to mineralocorticoid receptors (MR). The present study examines the distribution of this enzyme by in situ hybridization, using a homologous complementary RNA probe for 11betaHSD2. 11betaHSD2 messenger RNA was detected in classic epithelial aldosterone target tissues (kidney, salivary glands, and colon), the female reproductive system (ovary, oviduct, uterus, and placenta), and the adrenals; levels in heart, testis, and liver were below the limits of detection. We interpret the finding of 11betaHSD2 expression in both classical MR-containing aldosterone target tissues and a variety of other tissue as evidence that in the rat, the enzyme may play physiological roles in addition to that of excluding glucocorticoids from epithelial MR.  相似文献   

4.
Isozymes of 17beta-hydroxysteroid dehydrogenase (17betaHSD) regulate levels of bioactive androgens and estrogens in a variety of tissues. For example, the 17betaHSD type 3 isozyme catalyzes the conversion of the inactive C19-steroid androstenedione to the biologically active androgen, testosterone, in the testis. Testosterone is essential for the correct development of male internal and external genitalia; hence, deleterious mutations in the HSD17B3 gene give rise to a rare form of male pseudohermaphroditism termed 17betaHSD deficiency. Here, 2 additional missense mutations in the HSD17B3 gene in subjects with 17betaHSD deficiency are described. One mutation (A56T) impairs enzyme function by affecting NADPH cofactor binding. A second mutation (N130S) led to complete loss of enzyme activity. Also, a single base pair polymorphism in exon 11 of the HSD17B3 gene is described. The polymorphic A allele encodes a protein with a serine rather than a glycine at position 289 (GGT --> AGT). The frequency of the G allele (Gly) was 0.94, and that of the A allele (Ser) was 0.06. No difference in the frequencies of the G and A alleles was detected in 32 apparently normal women and 46 women with polycystic ovary syndrome. Enzymes bearing either glycine or serine at this position have similar substrate specificities and kinetic constants. The current findings boost to 16 the number of mutations in the HSD17B3 gene that impair testosterone synthesis and cause male pseudohermaphroditism, and add 1 apparently silent polymorphism to this tally.  相似文献   

5.
The 11 beta-hydroxysteroid dehydrogenase type II enzyme (11 beta HSD2) inactivates glucocorticoids in the kidney and thus prevents glucocorticoids from occupying the non-selective mineralocorticoid receptor in epithelial tissues. Mutations in the HSD11B2 gene have been found to cause the syndrome of apparent mineralocorticoid excess, a rare autosomal recessive disease characterized by severe hypertension. Thus, this locus could also be an ideal candidate involved in the etiology of primary hypertension. We identified a polymorphism in exon 3 characterized by a GAG to GAA transition at codon 178, with the loss of an Alu I restriction site and analysed it in an association study using end-stage renal disease patients, diabetic or essential hypertensive patients and control subjects. Two-hundred and eighty nine subjects and patients were analysed; the genotype was determined by amplification of genomic DNA and subsequent digestion with Alu I restriction enzyme. The prevalence of the Alu I allele was 8.6% in healthy control subjects (n = 116). This prevalence was lower (chi 2 P = 0.035 vs. controls) than the 18.0% in a group of renal transplant patients (n = 61). The corresponding values for patients with diabetes mellitus (n = 25), hypertension (n = 41) and patients on dialysis (n = 46) were 4.0%, 4.8% and 4.3%, respectively. There was no correlation between blood pressure and the marker in non-ESRD subjects. These data indicate the presence of a polymorphic marker in exon 3 of the HSD11B2 gene; this marker is associated with end-stage renal disease but not with essential hypertension in humans.  相似文献   

6.
Medullary thyroid carcinoma (MTC) may occur either as a sporadic or familial (FMTC) disease. Multiple endocrine neoplasia (MEN) type 2, inherited as an autosomal dominant disease, is characterized by coexistence of MTC with other endocrine neoplasia. Activating mutations of the RET proto-oncogene, involving the somatic or the germinal cell lineage, are found in both inherited and acquired forms. In this study, RET mutations were screened in 47 individuals either affected by MTC or belonging to families with hereditary MTC. Exons 10, 11, 13, 14, 15 and 16 of the RET gene were amplified by polymerase chain reaction and examined by DNA sequence and/or restriction enzyme analysis to detect mutations in purified amplicons. Six MEN 2A families with a germline mutation at codon 634, one FMTC family carrying a mutation at codon 618 and two MEN 2B families with a mutation at codon 918 were identified. In affected members of a MEN 2A family no known RET mutations were observed. Besides, we identified a germline mutation in a patient with apparently sporadic MTC and in two out of three sons, indicating the presence of a sporadic misclassified familial disease. In all of the families examined we were able to distinguish the affected vs unaffected (not at risk) members. A somatic mutation of codon 918 was detected in three out of ten patients with apparently sporadic MTC.  相似文献   

7.
A deficiency in uroporphyrinogen decarboxylase (UROD) enzyme activity, the fifth enzyme of the heme biosynthetic pathway, is found in patients with sporadic porphyria cutanea tarda (s-PCT), familial porphyria cutanea tarda (f-PCT), and hepatoerythropoietic porphyria (HEP). Subnormal UROD activity is due to mutations of the UROD gene in both f-PCT and HEP, but no mutations have been found in s-PCT. Genetic analysis has determined that f-PCT is transmitted as an autosomal dominant trait. In contrast, HEP, a severe form of cutaneous porphyria, is transmitted as an autosomal recessive trait. HEP is characterized by a profound deficiency of UROD activity, and the disease is usually manifest in childhood. In this study, a strategy was designed to identify alleles responsible for the HEP phenotype in three unrelated families. Mutations of UROD were identified by direct sequencing of four amplified fragments that contained the entire coding sequence of the UROD gene. Two new missense mutations were observed at the homoallelic state: P62L (proline-to-leucine substitution at codon 62) in a Portuguese family and Y311C (tyrosine-to-cysteine substitution at codon 311) in an Italian family. A third mutation, G281E, was observed in a Spanish family. This mutation has been previously described in three families from Spain and one from Tunisia. In the Spanish family described in this report, a paternal uncle of the proband developed clinically overt PCT as an adult and proved to be heterozygous for the G281E mutation. Mutant cDNAs corresponding to the P62L and Y311C changes detected in these families were created by site-directed mutagenesis. Recombinant proteins proved to have subnormal enzyme activity, and the Y311C mutant was thermolabile.  相似文献   

8.
Severe low-renin hypertension has few known causes. Apparent mineralocorticoid excess (AME) is a genetic disorder that results in severe juvenile low-renin hypertension, hyporeninemia, hypoaldosteronemia, hypokalemic alkalosis, low birth weight, failure to thrive, poor growth, and in many cases nephrocalcinosis. In 1995, it was shown that mutations in the gene (HSD11B2) encoding the 11beta-hydroxysteroid dehydrogenase type 2 enzyme (11beta-HSD2) cause AME. Typical patients with AME have defective 11beta-HSD2 activity, as evidenced by an abnormal ratio of cortisol to cortisone metabolites and by an exceedingly diminished ability to convert [11-3H]cortisol to cortisone. Recently, we have studied an unusual patient with mild low-renin hypertension and a homozygous mutation in the HSD11B2 gene. The patient came from an inbred Mennonite family, and though the mutation identified her as a patient with AME, she did not demonstrate the typical features of AME. Biochemical analysis in this patient revealed a moderately elevated cortisol to cortisone metabolite ratio. The conversion of cortisol to cortisone was 58% compared with 0-6% in typical patients with AME whereas the normal conversion is 90-95%. Molecular analysis of the HSD11B2 gene of this patient showed a homozygous C-->T transition in the second nucleotide of codon 227, resulting in a substitution of proline with leucine (P227L). The parents and sibs were heterozygous for this mutation. In vitro expression studies showed an increase in the Km (300 nM) over normal (54 nM). Because approximately 40% of patients with essential hypertension demonstrate low renin, we suggest that such patients should undergo genetic analysis of the HSD11B2 gene.  相似文献   

9.
The second most common cause of congenital adrenal hyperplasia is 11 beta-hydroxylase deficiency, an autosomal recessive disorder. We performed genetic analysis of CYP11B1, the gene encoding steroid 11 beta-hydroxylase, in three patients with classic 11 beta-hydroxylase deficiency. Herein we describe the first splice donor site mutation, a new nonsense mutation, and a new missense mutation in this disorder. An African-American patient was found to be a compound heterozygote for a codon 318 + 1G --> A substitution at the 5'-splice donor site of intron 5, in combination with Q356X, a nonsense mutation previously reported in an African-American patient. A Caucasian patient was found to be a compound heterozygote with a novel missense mutation, T318R, in combination with a previously reported 28-bp deletion in exon 2. A different mutation at codon 318 (T318M) has been described previously. A Caucasian patient was heterozygous for a novel nonsense mutation (Q19X) in exon 2. The second mutation was not identified in this patient. Multiple apparent polymorphisms were also observed. Two of these polymorphisms in CYP11B1 represent sequences from CYP11B2, suggesting that gene conversion may have occurred. In summary, we have identified three novel mutations and two previously reported mutations in CYP11B1 patients with 11 beta-hydroxylase deficiency. Our data suggest the presence of a mutational hot spot at codon 318 of CYP11B1, and the possibility of a founder effect in frequently identified mutations.  相似文献   

10.
A new concept in reproductive endocrinology is that the status of the ovary as a glucocorticoid target organ alters with follicular development. Evidence for a physiological role of glucocorticoids in the regulation of ovarian folliculogenesis has been strengthened by the discovery that 11beta-hydroxysteroid dehydrogenase (11betaHSD) mRNA expression in human granulosa cells is developmentally regulated. In this study, we quantified the pattern of expression and investigated the cellular location of 11betaHSD type 1 (11betaHSD1), 11betaHSD type 2 (11betaHSD2), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) mRNAs during follicular maturation in rat ovary. Immature female rats received treatment with eCG to induce preovulatory follicular development or eCG followed by hCG to induce luteinization. 11betaHSD1, 11betaHSD2, GR, and MR mRNAs were all detectable by ribonuclease protection assay in ovarian total RNA. Treatment with eCG alone caused an approximately 8-fold increase in the ovarian level of 11betaHSD1 mRNA, which rose to approximately 30-fold after additional treatment with hCG. Equine CG alone did not measurably affect the ovarian 11betaHSD2 mRNA level, but additional treatment with hCG reduced it to 34% of the control level. Expression of GR mRNA was unchanged by any gonadotropin treatment, while MR mRNA was down-regulated. A similar pattern of 11betaHSD1, 11betaHSD2, GR, and MR mRNA expression was observed in isolated granulosa cells. These results provide direct experimental evidence that 11betaHSD genes are gonadotropically regulated in the rat ovary, including granulosa cells, and are consistent with a shift in glucocorticoid metabolism from inactivation (due to oxidation by 11betaHSD2) to activation (reduction by 11betaHSD1) during hCG-induced granulosa cell luteinization.  相似文献   

11.
In adult life, the type 2 isozyme of 11beta-hydroxysteroid dehydrogenase (11betaHSD2) protects the mineralocorticoid receptor (MR) from glucocorticoid by inactivating cortisol to cortisone. 11betaHSD2 activity has been reported in human fetal tissues, where glucocorticoids may impair fetal growth yet are also required for normal fetal development. Using digoxigenin-labeled complementary ribonucleic acid (RNA) probes and an in-house 11betaHSD2 antiserum, we have analyzed the expression of 11betaHSD2, MR, and glucocorticoid receptor (GR) in human fetal tissues of gestational age 6-17 weeks (n=15). 11BetaHSD2 expression was absent at gestational age 6+ weeks, but was expressed in abundance in many fetal tissues between 8-12 weeks. At this time, 11betaHSD2 colocalized with GR messenger RNA (mRNA) expression in metanephros, gut, muscle, spinal cord and dorsal root ganglia, periderm, sex chords of testis, and adrenal. In particular within fetal kidney, intense expression of 11betaHSD2 and GR mRNA was observed over Bowman's capsule and the vascular tufts of developing glomeruli as they migrated from the surface of the kidney to the inner cortex. Only lung and adrenal medullary rests demonstrated high levels of GR mRNA but low levels of 11betaHSD2. 11BetaHSD2 mRNA and immunoreactivity staining patterns were similar, with the exception of the fetal adrenal, where mRNA was localized to the outer definitive zone but immunoreactivity was localized to the inner fetal zone. Colocalization of 11betaHSD2 (and GR mRNA) with MR mRNA was observed principally within epithelial cells of collecting ducts, particularly after 16 weeks gestation when the pattern of distribution of 11betaHSD2 became more adult in nature. High levels of MR mRNA were observed within developing bone. The data indicate that 11betaHSD2 in fetal life principally modulates ligand access to the GR in most fetal tissues, notably glomeruli and tubules in the developing kidney, testis, and periderm, and this may be have ramifications for fetal sodium homeostasis and differentiation. The development of tissues previously shown to have a critical requirement for glucocorticoids, such as lung and adrenal medulla, is facilitated by the expression of GR mRNA, but not 11betaHSD2. The expression of MR mRNA in high abundance in bone suggests a role for corticosteroids in human bone development, and the low/absent expression of 11betaHSD2 at this site suggests that it is functionally acting as a GR.  相似文献   

12.
Neurofibromatosis 2 (NF2) is an autosomal dominant disorder that predisposes patients to central nervous system tumors. It is caused by mutations in the NF2 tumor suppressor gene, which is located on chromosome 22q12. We studied 2 multigenerational NF2 families (three members of family 1 and the proband of the family) by gene mutation analysis and clinical assessment. One member of family 1 had a 169 C-->T point mutation at codon 57 of exon 2 and had a severe phenotype. His father had a silent 1113 C-->T point mutation at codon 371 of exon 11 and had a normal phenotype. The proband of family 2 had a deletion at nucleotide 720 G (codon 240) of exon 8. This led to a frameshift and termination at codon 250, and a severe NF2 phenotype. Our results indicate that clinical abnormalities can be present in carriers. Nonsense and frameshift mutations in the NF2 tumor suppressor gene are associated with phenotypes. The clinical abnormalities can develop at a young age.  相似文献   

13.
We identified two mutations in the CYP19 gene responsible for aromatase deficiency in an 18-year-old 46,XX female with ambiguous external genitalia at birth, primary amenorrhea and sexual infantilism, and polycystic ovaries. The coding exons, namely exons II-X, of the CYP19 gene were amplified by PCR from genomic DNA and sequenced directly. Direct sequencing of the amplified DNA from the patient revealed two single-base changes, at bp 1303 (C-->T) and bp 1310 (G-->A) in exon X, which were newly found missense mutations and resulted in codon changes of R435C and C437Y, respectively. Subcloning followed by sequencing confirmed that the patient is a compound heterozygote. The results of restriction fragment length polymorphism analysis and direct sequencing of the amplified exon X DNA from the patient's mother indicate maternal inheritance of the R435C mutation. Transient expression experiments showed that the R435C mutant protein had approximately 1.1% of the activity of the wild type, whereas C437Y was totally inactive. Cysteine-437 is the conserved cysteine in the heme-binding region believed to serve as the fifth coordinating ligand of the heme iron. To our knowledge, this patient is the first adult to have described the cardinal features of a syndrome of aromatase deficiency. Recognition that such defects exist will lead to a better understanding of the role of this enzyme in human development and disease.  相似文献   

14.
In Chlamydomonas reinhardtii, mutants defective in the cytochrome pathway of respiration lack the capacity to grow under heterotrophic conditions (in darkness on acetate). In the dark- strain duM18, a + 1 T addition in a run of four Ts, located at codon 145 of the mitochondrial cox1 gene encoding subunit I of cytochrome c oxidase, is responsible for the mutant phenotype. A leaky revertant (su11) that grows heterotrophically at a lower rate than wild-type cells was isolated from dum18. Its respiration sensitivity to cyanide was low and its cytochrome c oxidase activity was only 4% of that of the wild-type enzyme. Meiotic progeny obtained from crosses between revertant and wild-type cells inherited the phenotype of the mt- parent, showing that the suppressor mutation, like dum18 itself, is located in the mitochondrial genome. In order to map the su11 mutation relative to dum18, a recombinational analysis was performed on the diploid progeny. It demonstrated that su11 was very closely linked to the dum18 mutation less than 20-30 bp away. The cox1 gene of the su11 revertant was then sequenced. In addition to the + 1 T frameshift mutation still present at codon 145, an A-->C substitution was found at codon 146, leading to the replacement of a glutamic acid by an alanine in the polypeptide chain. No other mutations were detected in the cox1 coding sequence. As the new GCG codon (Ala) created at position 146 is very seldom used in the mitochondrial genome of C. reinhardtii, we suggest that the partial frameshift suppression by the nearby substitution is due to an occasional abnormal translocation of the ribosome (+ 1 base shift) facilitated both by the run of Ts and the low level of weak interaction of alanyl-tRNA.  相似文献   

15.
Deficiency of the ninth component of complement (C9D) is one of the most common genetic abnormalities in Japan, with an incidence of one homozygote in 1000. Although C9D individuals are usually healthy, it has been shown that they have an significantly increased risk of developing meningococcal meningitis. In the present study we report the molecular bases for C9D in 10 unrelated Japanese subjects. As a screening step for mutations, exons 2 to 11 of the C9 gene were analyzed using exon-specific PCR/single-strand conformation polymorphism analysis, which demonstrated aberrantly migrating DNA bands in exon 4 in all the C9D subjects. Subsequent direct sequencing of exon 4 of the C9D subjects revealed that eight of the 10 C9D subjects were homozygous for a C to T transition at nucleotide 343, the first nucleotide of the codon CGA for Arg95, leading to a TGA stop codon (R95X). R95X is a novel mutation different from those recently identified in a Swiss family with C9D. Cases 6 and 7 were heterozygous for the R95X mutation. Family study in case 10 confirmed the genetic nature of the defect. In case 6, the second mutation for C9D of the C9 gene was identified to be the substitution of Cys to Tyr at amino acid residue 507 (C507Y), while the genetic defect(s) in the other allele in case 7 remains unknown. Our results indicate that a novel mutation, R95X, is present in most cases of C9D in Japan.  相似文献   

16.
Hereditary methaemoglobinaemia, caused by deficiency of NADH-cytochrome b5 reductase (b5R), has been classified into two types, an erythrocyte (type I) and a generalized (type II). We analysed the b5R gene of two Thai patients and found two novel mutations. The patient with type II was homozygous for a C-to-T substitution in codon 8 3 that changes Arg (CGA) to a stop codon (TGA), resulting in a truncated b5R without the catalytic portion. The patient with type I was homozygous for a C-to-T substitution in codon 178 causing replacement of Ala (GCG) with Val (GTG). To characterize effects of this missense mutation, we investigated enzymatic properties of mutant b5R (Ala 178 Val). Although the mutant enzyme showed normal catalytic activity, less stability and different spectra were observed. These results suggest that this substitution influenced enzyme stability due to the slight change of structure. In conclusion, the nonsense mutation led to type II because of malfunction of the truncated protein. On the other hand, the missense mutation caused type I, due to degradation of the unstable mutant enzyme with normal activities in patient's erythrocytes, because of the lack of compensation by new protein synthesis during the long life-span of erythrocytes.  相似文献   

17.
Both cortisol and aldosterone bind to and activate the mineralocorticoid receptor. Cortisol concentrations are generally 100- to 200-fold higher than aldosterone concentrations, yet mineralocorticoids clearly exert effects different from glucocorticoids. One hypothesis is that 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD), which converts cortisol to biologically inactive cortisone, protects the mineralocorticoid receptor from cortisol. The circulating concentrations of cortisol in the squirrel monkey are 20- to 50-fold higher than human cortisol concentrations, yet this animal has no evidence of glucocorticoid or mineralocorticoid excess. We used this experiment of nature to test the hypotheses that the known (hepatic) form of 11 beta-HSD protects renal mineralocorticoid receptors from the action of cortisol and that it modulates glucocorticoid concentrations in target tissues. Using a long oligonucleotide based on the rat sequence, we cloned the squirrel monkey 11 beta-HSD complementary DNA and gene. The encoded monkey amino acid sequence is 75% and 91% identical to the corresponding rat and human sequences, respectively. The tissue abundance of the messenger RNA for the monkey enzyme was similar to or less than that seen for the rat and human enzymes. Both the monkey and human 11 beta-HSD complementary DNAs were cloned into an expression vector and used to transfect cultures of Chinese hamster ovary cells. Both vectors were transcribed and translated into equivalent amounts of 11 beta-HSD enzyme. The monkey enzyme was slightly more efficient than the human enzyme in converting [3H]cortisol to cortisone, and estimates of the Michaelis-Menten constant and maximum velocity of both enzymes are similar. These data indicate that the abundance and activity of the hepatic form of 11 beta-HSD are insufficient to inactivate the very high concentrations of cortisol in the squirrel monkey, suggesting that this form of 11 beta-HSD does not defend the mineralocorticoid receptor or protect tissues from high cortisol concentrations. Rather, this enzyme appears to favor conversion of cortisone to cortisol, thus maximizing tissue concentrations of cortisol to overcome glucocorticoid resistance associated with a 50% reduction in glucococorticoid receptors.  相似文献   

18.
The Lec1 Chinese hamster ovary (CHO) mutant is a leuco-phytohemagglutinin resistant cell line unable to synthesize complex and hybrid N-glycans due to the lack of N-acetylglucosaminyltransferase I (GnTI) activity. Here we have identified the lec1 mutation. Using specific antibodies to GnTI we demonstrate that Lec1 cells synthesize an inactive GnTI protein identical in size to the wild-type CHO enzyme. We have cloned and sequenced the gene coding GnTI from parental CHO and Lec1 mutant cells. Comparison of GnTI sequences detected three mutations within the luminal domain of Lec1 GnTI, each resulting in an amino acid substitution. The effect of each mutation on enzyme activity was analyzed by site-directed mutagenesis of wild-type rabbit GnTI and transient expression in COS cells. One of the three mutations (Cys123 --> Arg123) resulted in complete loss of activity, whereas the other two mutations had no apparent effect on enzyme activity. This conclusion was confirmed by expression of GnTI mutants in the GnTI null background of Saccharomyces cerevisiae. Both Lec1 GnTI and the GnTI mutant (Cys123 --> Arg123) are correctly localized to the Golgi apparatus, indicating that the inactive GnTI molecules are sufficiently well folded for efficient transport from the endoplasmic reticulum. These results demonstrate that the lec1 mutation is a point mutation and that Cys123 is a critical residue for GnTI activity.  相似文献   

19.
Although oxidation of cortisol or corticosterone by 11beta-hydroxysteroid dehydrogenase (11beta-HSD) represents the physiological mechanism conferring specificity for aldosterone on the mineralocorticoid receptor in mineralocorticoid target tissues, little attention has been paid until now to the expression and activity of this enzyme in human adrenals. We have shown that human adrenal cortex expresses 11beta-HSD type 2 (11beta-HSD2) gene, and found a marked 11beta-HSD2 activity in microsomal preparations obtained from slices of decapsulated normal human adrenal cortices. Under basal conditions, adrenal slices secreted, in addition to cortisol and corticosterone (B), sizeable amounts of cortisone and 11-dehydrocorticosterone (DH-B), the inactive forms to which the former glucocorticoids are converted by 11beta-HSD. Addition of the 11beta-HSD inhibitor glycyrrhetinic acid elicited a moderate rise in the production of cortisol and B and suppressed that of cortisone and DH-B. ACTH and angiotensin II evoked a marked rise in the secretion of cortisol and B, but unexpectedly depressed the release of cortisone and DH-B. ACTH also lowered the capacity of adrenal slices to convert [3H]cortisol to [3H]cortisone. This last effect of ACTH was concentration-dependently abolished by both aminoglutethimide and cyanoketone, which blocks early steps of steroid synthesis, but not by metyrapone, an inhibitor of 11beta-hydroxylase. Collectively, these findings indicate that the human adrenal cortex possesses an active 11beta-HSD2 engaged in the inactivation of newly formed glucocorticoids. The activity of this enzyme is negatively modulated by the main agonists of glucocorticoid secretion through an indirect mechanism, probably involving the rise in the intra-adrenal concentration of non-11beta-hydroxylated steroid hormones.  相似文献   

20.
Aldosterone, the most important mineralocorticoid, regulates electrolyte excretion and intravascular volume mainly through its effects on renal distal convoluted tubules and cortical collecting ducts. Excess secretion of aldosterone or other mineralocorticoids or abnormal sensitivity to mineralocorticoids may result in hypertension, suppressed plasma renin activity, and hypokalemia. Such conditions often have a genetic basis, and studies of these conditions have provided valuable insights into the normal and abnormal physiology of mineralocorticoid action. Deficiencies of steroid 11 beta-hydroxylase or 17 alpha-hydroxylase are types of congenital adrenal hyperplasia, the autosomal recessive inability to synthesize cortisol. These two defects often cause hypertension because of overproduction of cortisol precursors that are, or are metabolized to, mineralocorticoid agonists. These disorders result from mutations in the CYP11B1 and CYP17 genes encoding the corresponding enzymes. Glucocorticoid-suppressible hyperaldosteronism is an autosomal dominant form of hypertension in which aldosterone secretion is abnormally regulated by corticotropin. It is caused by recombinations between linked genes encoding closely related isozymes, 11 beta-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2), generating a dysregulated chimeric gene with aldosterone synthase activity. Apparent mineralocorticoid excess is a loss of functional ligand specificity of the mineralocorticoid receptor caused by a deficiency of the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase, an enzyme that normally metabolizes cortisol to cortisone to prevent cortisol from occupying the receptor. This autosomal recessive form of severe hypertension results from mutations in the HSD11K (HSD11B2) gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号