首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of Mesona Blumes gum (MBG) was examined on steady and dynamic shear of MBG/rice starch and MBG/wheat starch gels. In addition, stress relaxation and creep tests were performed for two types of cereal starch gels. The flow curves of both MBG/starch gels exhibited pseudoplastic behavior at shear rates between 0.01 and 10 s−1, and the data were fitted into the power law model (R2 = 0.91–0.98). Dynamic mechanical spectrum showed that all gels were strong gels in frequency between 0.1 and 10 Hz. Stress relaxation data at different strains indicated a strain‐softening phenomenon for both gels. Data were fitted into Maxwell model (R2 = 0.91–0.98). Creep curves were conducted at the shear stress 6.4 Pa within linear viscoelastic region of both MBG/starch gels. Data were fitted into Burgers model (R2 = 0.91–0.98). Apparent viscosity η, storage moduli G′, equilibrium stress relaxation modulus Ge and zero apparent viscosity η0 of MBG/rice starch gels decreased in the following order: 6/0>6/0.5>6/0.35>6/0.1 (starch/gum w/w). Whereas η, G′, Ge, and η0 of MBG/wheat starch gels increased gradually along side the increase of MBG contents. The stress relaxation time λ of MBG/rice starch gels increased in the following order: 6/0<6/0.5<6/0.35<6/0.1 (starch/gum w/w) while λ of MBG/wheat starch gels decreased gradually with the increase of MBG level. The influence of MBG on two examined cereal starch is totally opposite.  相似文献   

2.
《Food chemistry》2004,85(1):131-140
The starches separated from kernels of five different Indian mango cultivars (Chausa, Totapuri, Kuppi, Langra and Dashehari) were investigated for physicochemical, morphological, thermal and rheological properties. Mean granule length and width of the starches separated from mango cultivars ranged between 15.8–21.7 and 8.7–14.1 μm, respectively. The shape of starch granules varied from oval to elliptical. Amylose content of mango kernel starches from different cultivars ranged from 9.1 to 16.3%. Totapuri kernel starch, with the largest mean granular size, had the highest amylose content, while Chausa kernel starch, with the lowest mean granular size had the lowest amylose content. The transition temperatures (To, Tp and Tc) and enthalpy of gelatinization (ΔHgel) were determined using differential scanning calorimetry (DSC). To, Tp and Tc varied from 73.4 to 76.3, 78.1 to 80.3 and 83.0 to 85.7 °C, respectively. Chausa kernel starch showed the highest To, Tp, Tc, ΔHgel and peak height index among starches from different mango cultivars. The rheological properties of the starches from different mango cultivars measured using a dynamic rheometer, showed significant variations in the peak G′, G″ and peak tan δ values. Totapuri kernel starch showed the highest peak G′, G″, breakdown in G′ and lowest peak tan δ values. The large-size granules of Totapuri kernel starch appeared to be associated with higher values of peak G′ and G″. The turbidity of the gelatinized aqueous starch suspensions, from all mango cultivars, increased with increase in storage period. Dashehari starch paste showed lower turbidity values than other mango cultivars.  相似文献   

3.
Commercial maize starches and potato starches of two cultivars differing in physicochemical composition (granule size distribution; amylose to amylopectin ratio) and crystallinity were heated to 180 °C and then cooled by fast quench using a differential scanning calorimeter (DSC), in order to produce spherulitic starch morphologies. Among the raw maize starches, waxy maize starch had highest relative crystallinity (49%) whereas a lowest crystallinity of 33–39% was calculated for high-amylose maize starches. Potato starches showed a relative crystallinity of 50%. The temperatures and enthalpies of gelatinisation and melting varied among all the starches. High-amylose maize starches showed higher transition temperatures of gelatinisation (Tgel), whereas waxy maize starch had lowest Tgel and enthalpy of gelatinisation (ΔHgel). Similarly, a considerable variation in parameters related with crystalline melting (Tm1, Tm2 and ΔHm1, ΔHm2) was observed for different starches. The superheated gels of different starches treated using DSC were subjected to polarised microscopy, to confirm the formation of spherulites. Both the high-amylose starch gels showed the presence of spherulites exhibiting birefringence and a weak crystalline pattern. No birefringence was observed for waxy maize starch gel, while potato starch gels had some birefringence. The particle size distribution of high-amylose maize starch gels analysed through Zetasizer showed the sizes of spherulitic particles fall in the range of 300 nm–900 nm. The scanning electron micrographs of the dried high-amylose maize starch gels showed the presence of round spherulites consisting of several aggregated spherulitic particles. Amylose content and melting of crystallites during heating play an important role during recrystallisation of amylose (spherulite morphologies).  相似文献   

4.
The aim of this study was to analyze the influence of chemically modified starches (HDP and ADA) and high amylose corn starch (HACS) on the rheological and thermal properties of gluten-free dough based on corn and potato starches with pectin and guar gum. The results indicate that the dough with the addition of modified starch behaves as weak gel, the value of storage modulus G′ significantly depends on the frequency and the values of tan δ = G″/G′ range from 0.32 to 0.49. Significant influence of hydroxypropylated distarch phosphate (HDP) on the viscoelastic properties of dough was observed. The share of modified starch in the system caused a decrease of the instantaneous and viscoelastic compliance. It also influenced the retardation time and zero shear viscosity. The application of modified starches (HDP and ADA) for dough preparation did not have much impact on the pasting characteristics. However, significant reduction of the onset and end viscosities were found for high amylose starch (HACS). Thermograms obtained for individual dough systems were characterized by the presence of two peaks, associated with the existence of two different starches in the system. No significant effect of modified starch on the onset temperature (TO) and only a slight effect of HACS starch on gelatinization enthalpy were observed. However, the level of addition of individual starch affected peak and end (TE) temperatures, depending on the type of preparation.  相似文献   

5.
Starches from glutinous rice (1.4% amylose), Jasmine rice (15.0% amylose) and Chiang rice (20.2% amylose) were exposed to heat‐moisture treatment (HMT) at 100 °C for 16 h and at different moisture levels (18, 21, 24 and 27%). The effect of heat‐moisture treatment on structural and thermal properties of these three rice starches was investigated. The HMT did not change the size, shape and surface characteristics of rice starch granules. The A‐type crystalline pattern of rice starches remained unchanged after HMT. The relative crystallinity (RC) and the ratio of short‐range molecular order to amorphous (RSA) of heat‐moisture treated glutinous and Jasmine rice starches decreased with increasing moisture level of the treatments. In contrast, the RC of the treated Chiang rice starch remained practically unchanged. A peak of crystalline V‐amylose‐lipid complexes was clearly presented in all treated Chiang rice starches. The peak became progressively stronger with increasing moisture level of the treatment. Differential scanning calorimetry (DSC) of all treated rice starches showed a shift of the gelatinization temperature to higher values. Increasing moisture level of the treatments increased the onset gelatinization temperature (To) but decreased the gelatinization enthalpy (ΔH) of rice starches. A broad gelatinization temperature range (TcTo) with a biphasic endotherm was found for all treated Chiang rice starches and Jasmine rice starch after HMT27 (HMT at 27% moisture level). Additionally the (TcTo) of treated Chiang rice starches increased linearly with increasing moisture level of the treatments.  相似文献   

6.
The enthalpy–entropy compensation theory was applied to the experimental moisture adsorption and desorption isotherm data (water activity (aw) range 0.006–0.982) of raw potato, potato starch gel, potato starch powder, highly amylopectin corn starch powder and highly amylose corn starch powder in the temperature range 30–60 °C. A linear relation existed between differential enthalpy (ΔH) and differential entropy (ΔS) for all the experimental data considered, thus satisfying the enthalpy–entropy compensation theory. Further analysis of the data indicated an enthalpy-controlled (isokinetic temperature (Tβ) > harmonic mean temperature (Thm)) and spontaneous (−ΔG) sorption process.  相似文献   

7.
A study of the retrogradation process in five argentine rice starches   总被引:1,自引:0,他引:1  
Rate of the retrogradation process of five new argentine genotypes rice starches with different amylose contents and gelatinization temperatures during storage at 4.5 ± 0.5 °C was studied using differential scanning calorimetry (DSC).Significant differences were not found among transition temperatures, i.e., T0 (onset temperature), Tp (peak temperature) and Tc (conclusion temperature), of non-waxy genotypes when studied using DSC. An increased retrogradation enthalpy (ΔH, mJ/mg) with the storage time occurred with all non-waxy samples. The waxy genotype, W4109, did not show a retrogradation peak for the period under study. Genotypes with high total amylose content (TAM) retrograded more than those with lower content. The kinetic parameters “k” and “n” were evaluated using the Avrami model appearing to be related to the water-soluble amylose (SAM) content. Relationship between the retrogradation degree (%R) and the water-insoluble amylose (IAM) content was found. Gelatinization temperature of the starch (TG) seemed to affect the retrogradation rate.  相似文献   

8.
《Food chemistry》2002,79(2):183-192
The physico-chemical, morphological, thermal and rheological properties of the starches separated from different potato cultivars (Kufri Jyoti, Kufri Badshah and Pukhraj) were studied. The starches separated from the mealier cultivars (Kufri Jyoti and Kufri Badshah) showed lower transition temperatures (To; Tp and Tc), peak height indices (PHI), and higher gelatinization temperature range (R) and enthalpies of gelatinization (ΔHgel) than the starch from the least mealy cultivar (Pukhraj). Swelling power, solubility, amylose content and transmittance values were observed to be higher for Kufri Jyoti and Kufri Badshah potato starches, while turbidity values were lower for these starches. The rheological properties of starches, measured using a dynamic rheometer, showed significant variation in the peak G, G″ and peak tan δ values. Kufri Badshah and Kufri Jyoti starches showed higher peak G′, G″ and lower peak tan δ values than Pukhraj starch during heating and cooling cycles. Kufri Jyoti and Kufri Badshah starches showed higher breakdown in G′ than starch from the Pukhraj potato cultivar. The large-sized granules of the starches from Kufri Badshah and Kufri Jyoti appeared to be associated with higher values of peak G′ and G″ and consistency coefficient. Starch from the least mealy cultivar (Pukhraj) showed higher retrogradation, which increased progressively during storage at 4 °C for 120 h.  相似文献   

9.
The starch digestibility and rheological properties of gels were evaluated in the presence of three non-starch polysaccharides (agar, xanthan gum and konjac glucomannan) with rice starch. Each polysaccharide was added to 30% (w/w) rice starch suspension at defined concentrations and starch gels were prepared. The extent of starch gel digestibility was determined by an in vitro method and rheological properties by a dynamic oscillatory test and a compression test. The added polysaccharides suppressed starch hydrolysis in the gels compared with the control, and a concentration dependency of this suppressive effect was observed. Adding agar and xanthan gum increased the storage shear modulus (G′) of starch gels, while adding konjac glucomannan decreased G′ values. The results indicate that the suppressive effect of non-starch polysaccharides on starch digestibility appears to be not only due to the rigidity of the gel, but also the interaction between starch and non-starch polysaccharides.  相似文献   

10.
Presently, rice cultivars are categorized according to amylose content into three groups: low, medium and high amylose content cultivars. The correlation of amylose content with gelatinization properties, retrogradation, and pasting properties of eleven cultivars of Thai rice were investigated. Rice flour was prepared from milled rice by the wet grinding process. Onset (To), peak (Tp) and conclusion (Tc) temperatures of gelatinization, (determined by DSC) were found to be highly positively correlated with amylose levels. This correlation could be used for prediction of amylose content of rice flour. Low amylose starch could also be characterized by low degree of retrogradation (%R). The data obtained from RVA‐viscograms (peak viscosity, breakdown, setback, and pasting temperature) can be used only for characterization of the group of low amylose starches (waxy rice). It was demonstrated that low amylose rice starch provided the highest peak viscosity and breakdown and the lowest setback and pasting temperature among the groups investigated.  相似文献   

11.
《Food chemistry》2003,80(1):99-108
Morphological, thermal and rheological properties of starches separated from five rice cultivars (PR-106, PR-114, IR-8, PR-103 and PR-113), varying in amylose content, were studied. Amylose contents of starches separated from PR-103, IR-8, PR-106, PR-114 and PR-113 were 7.83, 15.62, 16.05, 16.13 and 18.86%, respectively. The granular size, measured using a Scanning Electron Microscope, varied from 2.4 to 5.4 μm in all rice starches. PR-103 starch, with lowest average granular size, amylose content and solubility, had the highest swelling power, while PR-113 starch, with the highest average granular size and amylose content had the lowest swelling power. PR-103 starch showed highest transition temperatures, enthalpies of gelatinization, peak height index, range and enthalpies of retrogradation. The retrogradation (%) was observed to be highest in PR-113 starch and lowest in PR-103 starch. The changes in rheological parameters of rice starches during heating were measured using a Dynamic rheometer. PR-113 rice starch showed the highest G′, G″ and breakdown in G′ values, whereas PR-103 starch showed the lowest values for these parameters. Turbidity value of gelatinized pastes from all rice starches progressively increased up to the 3rd day during refrigerated storage, PR-103 starch paste showed the lowest turbidity value and PR-113 starch showed the highest value. The syneresis (%) of starch pastes, from different rice cultivars during storage at 4 °C, was also measured. The syneresis of starch pastes from all rice cultivars, except PR-103, increased with storage. PR-103 starch paste showed negligible syneresis during storage.  相似文献   

12.
BACKGROUND: The creation of starch‐based foods incorporated with functional ingredients such as probiotics is of great current interest in the food industry. This study aimed to investigate the effects of prebiotic oligosaccharides on the phase transition temperatures and rheological characteristics of waxy rice starch dispersions. Four oligosaccharides were applied to the rice starch dispersions: chitooligosaccharides, fructooligosaccharides, isomaltooligosaccharides and xylooligosaccharides. RESULTS: The addition of 125 g kg?1 oligosaccharides elevated the onset and peak temperatures for gelatinisation of 200–400 g kg?1 waxy rice starch dispersions. The temperature of the storage modulus (G′) for gelatinisation increased markedly on adding fructooligosaccharides to 200–300 g kg?1 waxy rice starch. For gelatinisation of 300 g kg?1 rice starch dispersion the effectiveness of the oligosaccharides in changing the above parameters was as follows: chitooligosaccharides > fructooligosaccharides > isomaltooligosaccharides > xylooligosaccharides. Moreover, their effectiveness was dependent on the amylose content, as illustrated by comparing waxy and non‐waxy rice starches (amylose contents 9–256 g kg?1). Importantly, the logarithmic G95 change was linearly and negatively correlated with amylose content. CONCLUSION: The results suggest that oligosaccharide‐containing rice starch dispersions may potentially be used for the formulation of oligosaccharide‐containing starchy functional foods owing to the rheological changes of these starch dispersions. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
The waxy starches used in this investigation (maize (WM), barley (WB) and two rice starches RD4 and IR29) showed different gelatinization temperatures (GT) and enthalpies (ΔHG) measured with differential scanning calorimetry (DSC). The differences in GT and ΔHG could only partially be related to X-ray crystallinity. The high GT waxy starches WM and RD4 retrograded to a greater extent measured with DSC and the order of increased retrogradation agreed well with the order of X-ray crystallinity of the retrograded waxy starches. The melting temperature (TC) of the retrograded waxy starches in contrast to GT was very similar for all starches. This indicates that the temperature of the glass transition (Tg) of the amorphous regions in the starch granules controlled the onset GT and perhaps also the extent of retrogradation. Addition of cetyl trimethyl ammonium bromide (CTAB) decreased the extent of retrogradation more than 45% compared to the melting enthalpy (ΔHC) of the waxy starches without CTAB addition. The rice starch RD4 was most affected by the CTAB addition, and the WM starch the least. The viscoelastic behaviour in the temperature interval 25–90°C of 12%(w/w) gels differed between the waxy starches. The WB starch gels showed the highest storage modulus (G′) value and the lowest phase angle (δ), i. e. strongest and least viscous gels. The WM starch gels showed the lowest G′ value and the highest δ. The rice starches were in between with the RC4 starch (high GT) showing higher G′ value and lower δ than the IR29 (low GT). The viscoelastic parameters changed only slightly with increased temperature. The addition of CTAB to the waxy starch gels changed the viscoelastic behaviour of the stronger and less viscous starch gels of the WB and RD4 as their G′ value decreased and δ increased with increased temperature. The effect on WM and IR29 was only small.  相似文献   

14.
We present for the first time the interactions of starch and cassia gum – a novel galactomannan recently approved for use in food processing. Viscoelastic, pasting and microstructural characterization of various starches (waxy; high amylose; normal; cross-linked waxy corn starch; potato starch) containing different levels of the cassia gum was carried out. Significant changes were observed in the morphology of granule remnants formed during gelatinization in the starch pastes prepared with and without the addition of cassia gum. The freeze-dried starch–cassia gum pastes presented a shrunken and tight arrangement of the starch granule remnants, when studied by scanning electron microscopy. A significant reduction in the granule remnant size was also calculated using laser diffraction particle size analysis. The extent of interaction with cassia gum differed significantly among the various starch types. All the unmodified corn starches recorded an increase in peak viscosity at all levels of the cassia gum addition. An increase in the final viscosity of these starches was also observed by the addition of cassia gum, with high amylose and normal corn starch showing the maximum. Similarly, the extent of breakdown and setback viscosity also differed among the different starch types. Ranges of dynamic rheological measurements (temperature, time and frequency sweeps) were performed within the viscoelastic zones. Rheological parameters, such as storage modulus (G′), loss modulus (G″) and the gelatinization temperature (Tgel), of the corn starches during the heating cycle were observed to increase, when cassia gum was present at lower levels. The starch–gum systems also exhibited higher tan δ values during both the heating and the cooling cycles, indicating the dominance of the viscous modulus. The G′ and G″ of all the corn starch gels containing cassia gum showed higher values throughout the frequency sweep range. However, the increase in G′ and G″ of different starches was not always consistent with the increase in cassia gum levels. The changes in rheological behaviour during storage of the starch gels, aged on the plate of the rheometer and then studied through time sweeps at 5 °C and frequency sweeps at 25 °C, suggested that the starch gels containing cassia gum had less pronounced changes in the rheological parameters than had their control counterparts.  相似文献   

15.
Four β-glucan preparations, i.e., curdlan (CL), oat (OG), barley (BG) and yeast (YG) β-glucans, were compared for their effects on the gelatinisation and retrogradation of rice starch (RS). Rapid visco-analysis (RVA) showed that addition of any of these β-glucans significantly increased the peak, breakdown, final, and setback viscosities of RS, whereas the pasting temperatures were significantly decreased by OG or CL addition, but were unaffected by BG or YG addition. Differential scanning calorimetry (DSC) demonstrated that all the β-glucans had a negligible effect on the onset (To), peak (Tp), and conclusion (Tc) temperatures but slightly decreased the gelatinisation enthalpy (△H1) of RS. Storage of all the gels at 4 °C resulted in a marked decrease in the To, Tp, Tc, and melting enthalpy (△H2) values. The retrogradation ratio (△H2/△H1) and the phase transition temperature range (TcTo) of all the gels increased with storage time. Dynamic viscoelastic measurements revealed weak gel-like behaviour of all the gels, in which their storage modulus (G′) increased and their loss tangent (tan δ) decreased during storage. Steady flow tests illustrated time-dependent shear-thinning (thixotropic) behaviour of all the gels. The hysteresis loop area and the gel hardness increased with storage time. However, the rate and extent of retrogradation and the rheological and textural changes of the RS gels were reduced by addition of any of these β-glucans. The extent of the aforementioned effects differed among the different β-glucan preparations, generally in the order OG ≈ BG > CL ≈ YG.  相似文献   

16.
The effects of yellow mustard mucilage (YMM) on the functional and rheological properties of buckwheat and pea starch were studied. Addition of YMM resulted in a marked increase of peak viscosity for both buckwheat and pea starches. Dynamic oscillation measurements showed that the storage modulus (G′), loss modulus (G″) and dynamic viscosity (η*) of buckwheat and pea starches were increased but tangent δ was decreased by addition of YMM. The gel textures of both starches were markedly changed by the presence of YMM, which resulted in an increase of hardness, adhesiveness and chewiness but a decrease of resilience. Differential scanning calorimetry showed that the presence of YMM slightly increased melting enthalpy (ΔH) and the phase transition temperature range (TcTo) of buckwheat starch but these did not change much for pea starch. Addition of YMM–locust bean gum mixture (9:1) similarly increased the viscosity of buckwheat and pea starches but decreased gel hardness. The swelling powers of both starches and solubility of buckwheat starch were slightly decreased in the presence of YMM. Addition of YMM slowed the syneresis of buckwheat and pea starch gels.  相似文献   

17.
Starches extracted from rice flour from broken kernels of three rice cultivars (PUSA-44, PR-106 and PR-114) have been selected for modification studies due to their varied amylose content. Model solutions with different types and concentrations of modifying agents were prepared for comparative study of effect of amylose variation among the varieties and also individual and combined effect of modifying agents used. There was an increase in hot paste viscosity at 90 °C in modified starches whereas, cold paste viscosity decreased upon modification. A greater effect was observed with in dual modification of starches. The total set back was significantly lower in modified starches indicating the decreased retro-gradation of starch gels upon modification. The DSC results showed decreases in ΔH, To, Tp, and Tc, indicating that hydroxypropylation cross-linking and acetylation affect the structure of starches granules, requiring less heat for gelatinization. Pasting and thermal properties of PUSA-44 were significantly different from those of PR-106 and PR-114, probably due to relative higher amylose contents in the former. As observed in this study, bi-functional modifying agents can reduce the extent of cross-linking. Acetylation modified the morphology of the starch. However, hydroxypropylation cross-linking and dual modification retained the original structure with little modification.  相似文献   

18.
H.E. Oh  D.N. Pinder 《LWT》2011,44(4):1189-1198
Skim milk with added starch (waxy rice starch or potato starch at levels of 0-1.5 g/100 g) was either pressure-treated (500 MPa, 20 °C, 30 min) or heat-treated (80 °C, 30 min) and subsequently acidified (using glucono-δ-lactone) to form acid milk gels. In the second part of the study, the pH of the skim milk samples was adjusted from the natural condition (pH 6.64) to pH 6.5, 6.6 or 6.9 before the pressure or heat treatment and re-adjusted back to pH 6.64 after the respective treatment. The rheological properties of the samples during acidification and of the final acid gels were studied. The storage modulus, G′, of the final acid milk gels increased as more waxy rice starch was added to milk before pressure or heat treatment. However, acid milk gels made from pressure-treated milk with added potato starch did not show significant changes in the G′ of the final acid gels whereas those made from the heat-treated counterparts showed a marked increase in the final G′ as the potato starch level increased. Waxy rice starch was gelatinised in milk by both pressure treatment and heat treatment whereas potato starch was gelatinised by heat treatment only. Increasing the pH of milk before pressure or heat treatment increased the final G′ of the acid milk gel produced on subsequent acidification of the milk and the final G′ was increased further by the addition of waxy rice starch before the pressure or heat treatment.  相似文献   

19.
Morphological, viscoelastic, hydration, pasting, and thermal properties of starches separated from 10 different rice cultivars were investigated. Upon gelatinization, the G′ values of the rice starch pastes ranged from 37.4 to 2057 Pa at 25 °C, and remarkably, the magnitude depended on the starch varieties. The rheological behavior during gelatinization upon heating brought out differences in onset in G′ and degree of steepness. The cultivar with high amylose content (Goami) showed the lowest critical strain (γc), whereas the cultivars with low amylose content (Boseokchal and Shinseonchal) possessed the highest γc. The amylose content in rice starches affected their pasting properties; the sample possessing the highest amylose content showed the highest final viscosity and setback value, whereas waxy starch samples displayed low final viscosity and setback value. The onset gelatinization temperatures of the starches from 10 rice cultivars ranged between 57.9 and 64.4 °C. The amylose content was fairly correlated to hydration and pasting properties of rice starches but did not correlate well with viscoelastic and thermal characteristics. The combined analysis of hydration, pasting, viscoelastic, and thermal data of the rice starches is useful in fully understanding their behavior and in addressing the processability for food applications.  相似文献   

20.
Gelatinization and pasting properties of diverse rice types grown in two locations were examined by differential scanning calorimetry (DSC) and rotational rheometry, respectively. The data were compared to previously reported molecular starch properties for these samples: specifically, amylose content, starch molecular weight (Mw), and amylopectin side‐chain‐length distributions. Significant correlations were observed between amylose content, starch Mw, and the weight degree of polymerization of the long side chains of amylopectin F1(DPw) and many of the gelatinization and pasting properties measured. Higher amylose content corresponded with increased gelatinization onset (To) and peak temperatures (Tp), pasting onset and peak temperatures, and decreased peak and trough viscosity. Starch Mw correlated negatively with To, Tp, pasting onset, and peak temperature and positively with peak, trough, final, and breakdown viscosity. Amylopectin with DPw 59‐78 of F1(DPw) correlated with increased To, Tp, pasting onset and peak temperature, and decreased peak, trough, final and breakdown viscosity. Pasting properties were also somewhat related to DPw 21 of shorter side chains of amylopectin (F2(DPw)). Significant correlations between F2(DPw) and peak, final, and breakdown viscosity were observed (r = −0.447*, −0.391*, −0.388*, peak, final, and breakdown viscosity, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号