首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies concerning the preparation of gold phases dispersed on binary Ce-Ti oxide (Ce0.3Ti0.7O2) were performed in order to elaborate catalysts for total oxidation of VOCs. Solids containing gold, cerium and titanium were synthesized by impregnation and deposition precipitation (DP) method using NaOH, Na2CO3 or urea as precipitant agent. These catalysts have been characterized by means of total surface area (BET), X-ray diffraction (XRD), diffuse reflectance ultra-violet–visible spectroscopy (DR/UV–vis) and temperature programmed reduction (TPR) and their reactivity towards the oxidation of propene was studied. Thus, it was revealed that the gold-based material prepared by DP method using urea as precipitant agent was the most efficient catalyst towards the total oxidation of propene. Based on the characterisation data, it has been shown that the preparation method has an effect on the catalytic activity.  相似文献   

2.
The factors affecting the preparation of Au/TiO2 catalysts and their activity in the total oxidation of n-hexane were investigated. The mechanism of gold deposition–precipitation is discussed through comparison of the samples prepared by this method and others prepared by anion adsorption method. The influence of the pH and of the origin of TiO2 support used are additionally addressed. The difference of gold dispersion observed between the two methods is attributed to a difference of mobility of the gold precursors during the thermal treatment rather than to a difference of dispersion over the uncalcined samples. The mechanism of gold deposition–precipitation actually involves the reactions of gold hydroxy-chloride species with the surface. Another part of the work, thus, concerned the use of the deposition–precipitation method to prepare a Au/MnO2 catalyst. It is shown that the activity of γ-MnO2 is directly proportional to its surface area and that the deposition–precipitation procedure decreases the surface and activity of MnO2. However, the deposition of gold allows to avoid a too deep sintering of γ-MnO2 and, thus, helps to somehow preserve its activity.  相似文献   

3.
It is generally thought that catalysts produced by incipient wetness impregnation (IW) are very poor for low temperature CO oxidation, and that it is necessary to use methods such as deposition–precipitation (DP) to make high activity materials. The former is true, indeed such IW catalysts are poor, and we present reactor data, XPS and TEM analysis which show that this is due to the very negative effect of the chloride anion involved in the preparation, which results in poisoning and excessive sintering of the Au particles. With the DP method, the chloride is largely removed during the preparation and so poisoning and sintering are avoided.

However, we show here that, contrary to previous considerations, high activity catalysts can indeed be prepared by the incipient wetness method, if care is taken to remove the chloride ion during the process. This is achieved by using the double impregnation method (DIM). In this a double impregnation of chloroauric acid and a base are made to precipitate out gold hydroxide within the pores of the catalyst, followed by limited washing. This results in a much more active catalyst, which is active for CO oxidation at ambient temperature. The results for DIM and DP are compared, and it is proposed that the DIM method may represent an environmentally and economically more favorable route to high activity gold catalyst production.  相似文献   


4.
The investigations focused on the influence of doping an alumina support with different base metal oxides on the catalytic performance of gold catalysts to oxidize glucose to gluconic acid. Sodium oxide and calcium oxide strongly enhanced the reaction rate for catalysts prepared by both the deposition–precipitation and incipient wetness method. Urea was used as the precipitation agent in the former. The total selectivity of the catalysts was not influenced by the dopants. TEM analysis revealed very small gold particles of less than 2 nm for sodium doped catalysts prepared by the two methods.  相似文献   

5.
In the preparation of Au/TiO2 (P-25) catalysts by the method commonly but inaccurately known as deposition–precipitation (DP), the uptake of anionic complexes in solution onto the support is maximal close to the pH of the isoelectric point (6); below this pH, complexes are adsorbed electrostatically, but at higher pH values, especially at pH 8–9, the neutral Au(OH)3·H2O is reversibly adsorbed on the negatively charged surface. The specific activity (per gram of gold) peaks however at pH 8–9, because here the adsorbed complex is largely chlorine-free. The reversibility of the adsorption equilibrium is proved by alteration of the pH during the course of a single preparation through analysis of samples removed at intermediate points. This observation enables poorly dispersed precursors or sintered gold particles to be re-dispersed, and high activity restored.  相似文献   

6.
Gold loaded on TiO2 (Au/TiO2) catalysts were prepared using Au(I)–thiosulfate complex (Au(S2O3)23−) as the gold precursor for the first time. The samples were characterized by UV–vis diffuse reflectance spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic absorption flame emission spectroscopy (AAS), and X-ray photoelectron spectroscopy (XPS) methods. Using Au(S2O3)23− as gold precursor, ultra-fine gold nanoparticles with a highly disperse state can be successfully formed on the surface of TiO2. The diameter of Au nanoparticles increases from 1.8 to 3.0 nm with increasing the nominal Au loading from 1% to 8%. The photocatalytic activity of Au/TiO2 catalysts was evaluated from the analysis of the photodegradation of methyl orange (MO). With the similar Au loading, the catalysts prepared with Au(S2O3)23− precursor exhibit higher photocatalytic activity for methyl orange degradation when compared with the Au/TiO2 catalysts prepared with the methods of deposition–precipitation (DP) and impregnation (IMP). The preparation method has decisive influences on the morphology, size and number of Au nanoparticles loaded on the surface of TiO2 and further affects the photocatalytic activity of the obtained catalysts.  相似文献   

7.
In the preparation of 1% Au/TiO2 catalysts supported on either Degussa P-25 or anatase (90 m2 g−1) by deposition–precipitation, the gold content passes through a maximum at about the isoelectric point (pH 6), but maximum specific rates occur at pH 8–9 because the Au particle size becomes smaller as the pH is further increased. The gold uptake increases with the surface area of the support (anatase, rutile, P-25) and is complete above 200 m2 g−1; adsorption of the gold precursor at pH 9 is shown to be equilibrium-limited. Highest activities are found with supports of 50 m2 g−1. Catalysts made with high-area anatase (240 or 305 m2 g−1) are least active but show least deactivation.With Au/SnO2 catalysts, gold uptake does not depend on the area of the support, and is highest at pH 7–8; very active catalysts (T50 = 230–238 K) are obtained using SnO2 of 47 m2 g−1. Storing a catalyst at 258 K for 1 week dramatically improves its stability. Results for Au/CeO2 and Au/ZrO2 catalysts confirm that moderate support areas give the most active catalysts, and suggest that surface area is often more important than chemical composition.  相似文献   

8.
Mesoporous titania with high surface area and uniform pore size distribution was synthesized using surfactant templating method through a neutral [C13(EO)6–Ti(OC3H7)4] assembly pathway. The different gold content (1–5 wt.%) was supported on the mesoporous titania by deposition–precipitation (DP) method. The catalysts were characterized by X-ray diffraction, TEM, SEM, N2 adsorption analysis and TPR. The catalytic activity of gold supported mesoporous titania was evaluated for the first time in water–gas shift reaction (WGSR). The influence of gold content and particle size on the catalytic performance was investigated. The catalytic activity was tested at a wide temperature range (140–300 °C) and at different space velocities and H2O/CO ratios. It is clearly revealed that the mesoporous titania is of much interest as potential support for gold-based catalyst. The gold/mesoporous titania catalytic system is found to be effective catalyst for WGSR.  相似文献   

9.
A key discovery in the last two decades has been the realisation that gold, when prepared as supported nanoparticles, is exceptionally effective as an oxidation catalyst, particularly for the oxidation of alcohols. The catalytic efficacy is enhanced further by the alloying of gold with palladium. In this paper we study the effect of the method preparation of gold–palladium alloy nanoparticles supported on titania and investigate the activity of the materials for the selective oxidation of benzyl alcohol. We contrast impregnation and deposition–precipitation methods and demonstrate that the most active catalysts are prepared using the deposition–precipitation method.  相似文献   

10.
以溶胶-凝胶法制备TiO2载体,用沉积-沉淀法制备出一系列负载型Au/TiO2。系统考察了焙烧温度、金的负载量、反应液pH值、沉淀剂种类以及Cl-存在与否等制备参数对催化剂活性的影响。以室温下CO的催化氧化为探针反应,确定催化剂的最适宜制备参数,并对优化的质量分数为1.0%的Au/TiO2催化剂进行了活性稳定性测试。结果表明:Au/TiO2的最适宜焙烧温度是200~350℃;反应液的最适宜pH值为9;最适宜沉淀剂是NaOH;金的负载量(质量分数,下同)在0.5%~5.0%范围内时,金含量越高,催化剂活性和热稳定性越好。大量Cl-的存在能导致催化剂活性的显著下降。对优化的Au/TiO2催化剂在室温下催化氧化不同浓度的CO进行循环测试,经历3次循环,连续反应2 160 min后,CO的转化率仍为100%。  相似文献   

11.
A number of oxide-supported gold catalysts have been prepared by deposition–precipitation, with variation of the pH over a wide range, the optimum pH for high activity being 9 for TiO2, 7.5 for Fe2O3, and 7 for SnO2 and CeO2. Whereas the activity shown by Au/TiO2 and Au/Fe2O3 decreased linearly with time, Au/CeO2 and Au/SnO2 underwent an initial major deactivation. Addition of iron in the preparation lowered the rate of deactivation when TiO2, SnO2 and CeO2 were used as supports, and imparted activity when as with Bi2O3 it was previously lacking. XPS revealed the existence of a broad multi-state iron-containing region, and TEM and STEM/EDX indicated that small gold particles (1.5–4 nm) were partly in contact with it. Improved stability is therefore due to gold particles being in contact with an iron phase such as FeO(OH); calcination removed the stabilisation.  相似文献   

12.
Carbon nanotube supported gold catalysts prepared by deposition–precipitation with urea (DP urea) were characterized by various techniques. Its catalytic activity was examined for the oxidation of styrene using t-butylhydroperoxide as oxidant. This system showed good epoxide selectivity. The other factors, such as solvent, reaction time, concentrations of oxidant and catalyst, have also been investigated and reaction conditions are optimized. It is a novel highly active/selective and reusable heterogeneous catalyst for styrene epoxidation.  相似文献   

13.
《Journal of Catalysis》2006,237(1):190-196
Gold catalysts supported on TiO2 were prepared by a deposition–precipitation (DP) method to investigate how highly reproducible performance of the gold catalysts in CO oxidation can be achieved. A protocol was established for synthesizing identically performing catalysts by different operators. The results show that for this synthesis route, the calcination step is not needed to form highly active Au/TiO2 catalysts, but leads to decreased activity. Improved catalytic activity was observed when a high solution pH was adjusted during the precipitation. Surprisingly, wet impregnation followed by ammonia steam treatment and a washing step with water also leads to Au/TiO2 with 2- to 4-nm individual gold particles highly dispersed on the TiO2 surface. In addition, this catalyst is active for room temperature CO oxidation. The temperature for 50% conversion of CO is below 25 °C, which is comparable to that of the gold catalyst prepared by the DP method. Therefore, contrary to reports in the literature, the impregnation method can be used in the preparation of high-activity gold catalysts.  相似文献   

14.
Gold catalysts supported on nano-crystalline ceria prepared by deposition precipitation have been characterised and tested for the total oxidation of naphthalene. Two different precipitation methods were used to prepare the nano-crystalline ceria supports and it was observed that although both supports were active materials for naphthalene oxidation, ceria synthesized by homogeneous precipitation with urea was markedly more active than CeO2 precipitated by carbonate. The addition of gold to both active CeO2 catalysts resulted in different effects for the total oxidation of naphthalene. Gold addition promotes the naphthalene conversion to CO2 when ceria is prepared by precipitation with carbonates, whilst the light off temperature is shifted towards higher temperatures when gold is added to ceria synthesized by the urea method. This behaviour has been related to a change in the support characteristics and a removal of the carbonate surface species, when gold is deposited onto the ceria support.  相似文献   

15.
Selective production of hydrogen by partial oxidation of methanol (CH3OH + (1/2)O2 → 2H2 + CO2) over Au/TiO2 catalysts, prepared by a deposition–precipitation method, was studied. The catalysts were characterized by XRD, TEM, and XPS analyses. TEM observations show that the Au/TiO2 catalysts exhibit hemispherical gold particles, which are strongly attached to the metal oxide support at their flat planes. The size of the gold particles decreases from 3.5 to 1.9 nm during preparation of the catalysts with the rise in pH from 6 to 9 and increases from 2.9 to 4.3 nm with the rise in calcination temperature up to 673 K. XPS analyses demonstrate that in uncalcined catalysts gold existed in three different states: i.e., metallic gold (Au0), non-metallic gold (Auδ+) and Au2O3, and in catalysts calcined at 573 K only in metallic state. The catalytic activity is strongly dependent on the gold particle size. The catalyst precipitated at pH 8 and uncalcined catalysts show the highest activity for hydrogen generation. The partial pressure of oxygen plays an important role in determining the product distribution. There is no carbon monoxide detected when the O2/CH3OH molar ratio in the feed is 0.3. Both hydrogen selectivity and methanol conversion increase with increasing the reaction temperature. The reaction pathway is suggested to consist of consecutive methanol combustion, partial oxidation and steam reforming.  相似文献   

16.
When Au is deposited as nano-particles on select metal oxides, it exhibits surprisingly high catalytic activity for many oxidation reactions. Therefore, there is also the possibility to improve the activities of Au catalysts for hydrogenation using the appropriate preparation methods like the gas-phase grafting method (GG) and the deposition precipitation method (DP). In this work, we investigated the hydrogenation of 1,3-butadiene and of crotonaldehyde over Au catalysts prepared by GG and DP and discussed the structure sensitivity of these reactions. From these experiments, it was found that the catalytic activities for the hydrogenation of 1,3-butadiene over Au catalysts was almost structure insensitive in terms of the size effect of Au particles and the influence of metal oxides supports and the crotonaldehyde hydrogenation over Au catalysts was slightly sensitive to the selection of the support in the view point of the product selectivity.  相似文献   

17.
The influence of the preparation methods on the catalytic activity for CO oxidation was markedly large for Au-TiO2 and negligible for Pt-TiO2 catalysts. Platinum and gold were deposited on TiO2 by deposition-precipitation (DP), photodeposition (FD) and impregnation (IMP). The DP method gave the most active catalysts for both Pt and Au. Gold catalysts prepared by DP were active at temperatures below 273 K and showed a much greater activity than Pt catalysts.  相似文献   

18.
The present work focuses on the development of novel Cu-Pd bimetallic catalysts supported on nano-sized high-surface-area CeO2 for the oxygen-assisted water–gas-shift (OWGS) reaction. High-surface-area CeO2 was synthesized by urea gelation (UG) and template-assisted (TA) methods. The UG method offered CeO2 with a BET surface area of about 215 m2/g, significantly higher than that of commercially available CeO2. Cu and Pd were supported on CeO2 synthesized by the UG and TA methods and their catalytic performance in the OWGS reaction was investigated systematically. Catalysts with about 30 wt% Cu and 1 wt% Pd were found to exhibit a maximum CO conversion close to 100%. The effect of metal loading method and the influence of CeO2 support on the catalytic performance were also investigated. The results indicated that Cu and Pd loaded by incipient wetness impregnation (IWI) exhibited better performance than that prepared by deposition–precipitation (DP) method. The difference in the catalytic activity was related to the lower Cu surface concentration, better Cu–Ce and Pd–Ce interactions and improved reducibility of Cu and Pd in the IWI catalyst as determined by the X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) studies. A direct relation between BET surface area of the CeO2 support and CO conversion was also observed. The Cu-Pd bimetallic catalysts supported on high-surface-area CeO2 synthesized by UG method exhibited at least two-fold higher CO conversion than the commercial CeO2 or that obtained by TA method. The catalyst retains about 100% CO conversion even under extremely high H2 concentration.  相似文献   

19.
Catalytic wet air oxidation of a representative organic compound (aqueous solution of 5 g l−1 succinic acid at 190 °C and 50 bar total air pressure) was investigated over gold on titania prepared from the deposition–precipitation method (with urea or NaOH) and compared to experiments performed over a Ru/TiO2 catalyst. These preliminary results demonstrate that gold catalysts are efficient for the degradation of this organic acid. The catalytic activity is strongly dependent on the gold particle size characterized by transmission electron microscopy (TEM) with smaller particles producing higher turnover frequencies. Modification of metal dispersion occurs during reaction, leading to minor activity.  相似文献   

20.
Perovskite oxide LaCoO3 and the mixture oxides of La2O3 + Co3O4 were prepared by sol–gel method. Then Au/La–Co–O catalysts were prepared by deposition- precipitation (DP) method and characterized by means of XRD, BET, XPS, TEM and IR. The catalytic performance for CO low-temperature oxidation and stability over these catalysts were compared. The results of experiment showed gold catalysts supported on perovskite oxides have higher catalytic activity and stability than that of supported on the simple oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号