首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
哈希表示能够节省存储空间,加快检索速度,所以基于哈希表示的跨模态检索已经引起广泛关注。多数有监督的跨模态哈希方法以一种回归或图约束的方式使哈希编码具有语义鉴别性,然而这种方式忽略了哈希函数的语义鉴别性,从而导致新样本不能获得语义保持的哈希编码,限制了检索准确率的提升。为了同时学习具有语义保持的哈希编码和哈希函数,提出一种语义保持哈希方法用于跨模态检索。通过引入两个不同模态的哈希函数,将不同模态空间的样本映射到共同的汉明空间。为使哈希编码和哈希函数均具有较好的语义鉴别性,引入了语义结构图,并结合局部结构保持的思想,将哈希编码和哈希函数的学习融合到同一个框架,使两者同时优化。三个多模态数据集上的大量实验证明了该方法在跨模态检索任务的有效性和优越性。  相似文献   

2.
目的 基于哈希的跨模态检索方法因其检索速度快、消耗存储空间小等优势受到了广泛关注。但是由于这类算法大都将不同模态数据直接映射至共同的汉明空间,因此难以克服不同模态数据的特征表示及特征维度的较大差异性,也很难在汉明空间中同时保持原有数据的结构信息。针对上述问题,本文提出了耦合保持投影哈希跨模态检索算法。方法 为了解决跨模态数据间的异构性,先将不同模态的数据投影至各自子空间来减少模态“鸿沟”,并在子空间学习中引入图模型来保持数据间的结构一致性;为了构建不同模态之间的语义关联,再将子空间特征映射至汉明空间以得到一致的哈希码;最后引入类标约束来提升哈希码的判别性。结果 实验在3个数据集上与主流的方法进行了比较,在Wikipedia数据集中,相比于性能第2的算法,在任务图像检索文本(I to T)和任务文本检索图像(T to I)上的平均检索精度(mean average precision,mAP)值分别提升了6%和3%左右;在MIRFlickr数据集中,相比于性能第2的算法,优势分别为2%和5%左右;在Pascal Sentence数据集中,优势分别为10%和7%左右。结论 本文方法可适用于两个模态数据之间的相互检索任务,由于引入了耦合投影和图模型模块,有效提升了跨模态检索的精度。  相似文献   

3.
随着大数据时代的到来,利用哈希方法实现对异质多模态数据的快速跨模态检索受到越来越多的关注。为了获取更好的跨模态检索性能,提出有监督鉴别跨模态哈希算法。利用对象的标签信息对所要生成的哈希码进行约束。算法中的线性分类项和图拉普拉斯算子项分别用于提升哈希码鉴别能力和保留模态间相似性。对算法的目标函数利用迭代法进行求解。该算法在两个基准数据集的实验结果展现出优于目前最前沿的跨模态哈希检索方法。  相似文献   

4.
哈希编码能够节省存储空间、提高检索效率,已引起广泛关注.提出一种成对相似度迁移哈希方法(pairwise similarity transferring hash,PSTH)用于无监督跨模态检索.对于每个模态,PSTH将可靠的模态内成对相似度迁移到汉明空间,使哈希编码继承原始空间的成对相似度,从而学习各模态数据对应的哈希编码;此外,PSTH重建相似度值而不是相似度关系,使得训练过程可以分批进行;与此同时,为缩小不同模态间的语义鸿沟,PSTH最大化模态间成对相似度.在三个公开数据集上进行了大量对比实验,PSTH取得了SOTA的效果.  相似文献   

5.
刘芳名  张鸿 《计算机应用》2021,41(8):2187-2192
针对大多数跨模态哈希方法采用二进制矩阵表示相关程度,因此无法捕获多标签数据之间更深层的语义信息,以及它们忽略了保持语义结构和数据特征的判别性等问题,提出了一种基于多级语义的判别式跨模态哈希检索算法——ML-SDH.所提算法使用多级语义相似度矩阵发现跨模态数据中的深层关联信息,同时利用平等指导跨模态哈希表示在语义结构和判...  相似文献   

6.
李志欣  侯传文  谢秀敏 《软件学报》2023,34(11):4973-4988
大多数跨模态哈希检索方法仅使用余弦相似度进行特征匹配,计算方式过于单一,没有考虑到实例的关系对于性能的影响.为此,提出一种基于多重实例关系图推理的方法,通过构造相似度矩阵,建立全局和局部的实例关系图,充分挖掘实例之间的细粒度关系.在多重实例关系图的基础上进行相似度推理,首先分别进行图像模态和文本模态关系图内部的推理,然后将模态内的关系映射到实例图中进行推理,最后执行实例图内部的推理.此外,为了适应图像和文本两种模态的特点,使用分步训练策略训练神经网络.在MIRFlickr和NUS-WIDE数据集上实验表明,提出的方法在mAP指标上具有很明显的优势,在Top-k-Precision曲线上也获得良好的效果.这也说明所提方法对实例关系进行深入挖掘,从而显著地提升检索性能.  相似文献   

7.
针对现阶段深度跨模态哈希检索算法无法较好地检索训练数据类别以外的数据及松弛哈希码离散化约束造成的次优解等问题,提出自适应深度跨模态增量哈希检索算法,保持训练数据的哈希码不变,直接学习新类别数据的哈希码。同时,将哈希码映射到潜在子空间中保持多模态数据之间的相似性和非相似性,并提出离散约束保持的跨模态优化算法来求解最优哈希码。此外,针对目前深度哈希算法缺乏有效的复杂度评估方法,提出基于神经网络神经元更新操作的复杂度分析方法,比较深度哈希算法的复杂度。公共数据集上的实验结果显示,所提算法的训练时间低于对比算法,同时检索精度高于对比算法。  相似文献   

8.
基于哈希编码的无监督跨模态检索方法以其存储代价低、检索速度快、无需人工标注信息的优点受到了广泛的关注.最近的方法通过融合各模态的相似度信息构建联合模态相似度矩阵,用以指导哈希编码网络的学习.然而,这些方法未考虑数据特征空间的流形结构差异对相似度的影响而引入了噪声降低了模型的检索性能.本文提出了一种基于联合模态语义相似度修正的无监督跨模态哈希方法(JSSR),引入特征空间中的流形结构信息修正相似度矩阵中的噪声信息,同时增强语义相关样本的亲和力,使得生成的哈希码更具判别性和区分度.在典型的公开数据集NUS-WIDE和MIR Flickr上的实验结果表明,JSSR在跨模态检索精度上超越了现有的方法.  相似文献   

9.
针对大多数跨模态哈希检索方法仅通过分解相似矩阵或标签矩阵,从而导致标签语义信息利用不充分、标签矩阵分解过程语义信息丢失以及哈希码鉴别能力差的问题,提出了一种语义嵌入重构的跨模态哈希检索方法。该方法首先通过最小化标签成对距离和哈希码成对距离之间的距离差,从而将标签矩阵的成对相似性嵌入哈希码;接着对标签矩阵分解并重构学得共同子空间,共同子空间再回归生成哈希码,从而将标签矩阵的类别信息嵌入哈希码,并有效地控制标签矩阵分解过程的语义信息丢失情况,进一步提高哈希码的鉴别能力。在公开的三个基准数据集上进行了多个实验,实验结果验证了该方法的有效性。  相似文献   

10.
11.
胡鹏  彭玺  彭德中 《软件学报》2024,35(8):3739-3751
基于图的无监督跨模态哈希学习具有存储空间小、检索效率高等优点, 受到学术界和工业界的广泛关注, 已成为跨模态检索不可或缺的工具之一. 然而, 图构造的高计算复杂度阻碍其应用于大规模多模态应用. 主要尝试解决基于图的无监督跨模态哈希学习面临的两个重要挑战: 1)在无监督跨模态哈希学习中如何高效地构建图? 2)如何解决跨模态哈希学习中的离散值优化问题? 针对这两个问题, 分别提出基于锚点图的跨模态学习和可微分哈希层. 具体地, 首先从训练集中随机地选择若干图文对作为锚点集, 利用该锚点集作为中介计算每批数据的图矩阵, 以该图矩阵指导跨模态哈希学习, 从而能极大地降低空间与时间开销; 其次, 提出的可微分哈希层可在网络前向传播时直接由二值编码计算, 在反向传播时亦可产生梯度进行网络更新, 而无需连续值松弛, 从而具有更好的哈希编码效果; 最后, 引入跨模态排序损失, 使得在训练过程中考虑排序结果, 从而提升跨模态检索正确率. 通过在3个通用数据集上与10种跨模态哈希算法进行对比, 验证了提出算法的有效性.  相似文献   

12.
近期,跨模态视频语料库时刻检索(VCMR)这一新任务被提出,它的目标是从未分段的视频语料库中检索出与查询语句相对应的一小段视频片段.现有的跨模态视频文本检索工作的关键点在于不同模态特征的对齐和融合,然而,简单地执行跨模态对齐和融合不能确保来自相同模态且语义相似的数据在联合特征空间下保持接近,也未考虑查询语句的语义.为了解决上述问题,本文提出了一种面向多模态视频片段检索的查询感知跨模态双重对比学习网络(QACLN),该网络通过结合模态间和模态内的双重对比学习来获取不同模态数据的统一语义表示.具体地,本文提出了一种查询感知的跨模态语义融合策略,根据感知到的查询语义自适应地融合视频的视觉模态特征和字幕模态特征等多模态特征,获得视频的查询感知多模态联合表示.此外,提出了一种面向视频和查询语句的模态间及模态内双重对比学习机制,以增强不同模态的语义对齐和融合,从而提高不同模态数据表示的可分辨性和语义一致性.最后,采用一维卷积边界回归和跨模态语义相似度计算来完成时刻定位和视频检索.大量实验验证表明,所提出的QACLN优于基准方法.  相似文献   

13.
姚涛  孔祥维  付海燕  TIANQi 《自动化学报》2018,44(8):1475-1485
针对网络上出现越来越多的多模态数据,如何在海量数据中检索不同模态的数据成为一个新的挑战.哈希方法把数据映射到Hamming空间,大大降低了计算复杂度,为海量数据的跨模态检索提供了一条有效的路径.然而,大部分现存方法生成的哈希码不包含任何语义信息,从而导致算法性能的下降.为了解决这个问题,本文提出一种基于映射字典学习的跨模态哈希检索算法.首先,利用映射字典学习一个共享语义子空间,在子空间保持数据模态间的相似性.然后,提出一种高效的迭代优化算法得到哈希函数,但是可以证明问题的解并不是唯一的.因此,本文提出通过学习一个正交旋转矩阵最小化量化误差,得到性能更好的哈希函数.最后,在两个公开数据集上的实验结果说明了该算法优于其他现存方法.  相似文献   

14.
田加林  徐行  沈复民  申恒涛 《软件学报》2022,33(9):3152-3164
零样本草图检索将未见类的草图作为查询样本,用于检索未见类的图像。因此,这个任务同时面临两个挑战:草图和图像之间的模态差异以及可见类和未见类的不一致性。过去的方法通过将草图和图像投射到一个公共空间来消除模态差异,还通过利用语义嵌入(如词向量和词相似度)来弥合可见类和未见类的语义不一致。在本文中,我们提出了跨模态自蒸馏方法,从知识蒸馏的角度研究可泛化的特征,无需语义嵌入参与训练。具体而言,我们首先通过传统的知识蒸馏将预训练的图像识别网络的知识迁移到学生网络。然后,通过草图和图像的跨模态相关性,跨模态自蒸馏将上述知识间接地迁移到草图模态的识别上,提升草图特征的判别性和泛化性。为了进一步提升知识在草图模态内的集成和传播,我们进一步地提出草图自蒸馏。通过为数据学习辨别性的且泛化的特征,学生网络消除了模态差异和语义不一致性。我们在三个基准数据集,即Sketchy、TU-Berlin和QuickDraw,进行了广泛的实验,证明了我们提出的跨模态自蒸馏方法与当前方法相比较的优越性。  相似文献   

15.
跨模态哈希通过将不同模态的数据映射为同一空间中更紧凑的哈希码,可以大大提升跨模态检索的效率.然而现有跨模态哈希方法通常使用二元相似性矩阵,不能准确描述样本间的语义相似关系,并且存在平方复杂度问题.为了更好地挖掘数据间的语义相似关系,提出了一个基于标记增强的离散跨模态哈希方法.首先借助迁移学习的先验知识生成样本的标记分布,然后通过标记分布构建描述度更强的语义相似性矩阵,再通过一个高效的离散优化算法生成哈希码,避免了量化误差问题.最后,在两个基准数据集上的实验结果验证了所提方法在跨模态检索任务上的有效性.  相似文献   

16.
In the era of big data rich in We Media, the single mode retrieval system has been unable to meet people’s demand for information retrieval. This paper proposes a new solution to the problem of feature extraction and unified mapping of different modes: A Cross-Modal Hashing retrieval algorithm based on Deep Residual Network (CMHR-DRN). The model construction is divided into two stages: The first stage is the feature extraction of different modal data, including the use of Deep Residual Network (DRN) to extract the image features, using the method of combining TF-IDF with the full connection network to extract the text features, and the obtained image and text features used as the input of the second stage. In the second stage, the image and text features are mapped into Hash functions by supervised learning, and the image and text features are mapped to the common binary Hamming space. In the process of mapping, the distance measurement of the original distance measurement and the common feature space are kept unchanged as far as possible to improve the accuracy of Cross-Modal Retrieval. In training the model, adaptive moment estimation (Adam) is used to calculate the adaptive learning rate of each parameter, and the stochastic gradient descent (SGD) is calculated to obtain the minimum loss function. The whole training process is completed on Caffe deep learning framework. Experiments show that the proposed algorithm CMHR-DRN based on Deep Residual Network has better retrieval performance and stronger advantages than other Cross-Modal algorithms CMFH, CMDN and CMSSH.  相似文献   

17.
哈希学习通过设计和优化目标函数,并结合数据分布,学习得到样本的哈希码表示.在现有哈希学习模型中,线性模型因其高效、便捷的特性得到广泛应用.针对线性模型在哈希学习中的参数优化问题,提出一种基于相似度驱动的线性哈希模型参数再优化方法.该方法可以在不改变现有模型各组成部分的前提下,实现模型参数的再优化,提升模型检索性能.该方法首先通过运行现有哈希算法多次,获得训练集的多个哈希码矩阵,然后基于相似度保持度量标准和融合准则对多个哈希码矩阵进行优化选择,获得训练集的优化哈希矩阵,最后利用该优化哈希矩阵对原模型的参数进行再优化,进而获得更优的哈希学习算法.实验结果表明,该方法对不同的哈希学习算法性能都有较为显著的提升.  相似文献   

18.
随着不同模态的数据在互联网中的飞速增长,跨模态检索逐渐成为了当今的一个热点研究问题.哈希检索因其快速、有效的特点,成为了大规模数据跨模态检索的主要方法之一.在众多图像-文本的深度跨模态检索算法中,设计的准则多为尽量使得图像的深度特征与对应文本的深度特征相似.但是此类方法将图像中的背景信息融入到特征学习中,降低了检索性能...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号