首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Optical Fiber Technology》2013,19(5):363-368
In this paper, two novel structures of photonic crystal fibers (PCFs) containing elliptical rings of circular air holes are presented. The circular air holes in both structures are arranged in seven elliptical rings, but the number of holes in each ring is different for these structures. Moreover, air hole diameter and hole-to-hole pitch are altered along the distance from the center of the fiber’s cross section. Properties, such as birefringence and confinement loss, of these structures with different numbers of air hole rings are numerically analyzed by using the multipole method. Numerical results show that a high birefringence of 1.626 × 10−3 can be reached at the wavelength of 1.55 μm, and a low confinement loss on the order of 10−8 dB/m can be achieved at the same wavelength. Furthermore, it is also found that elliptic ratio obviously affects birefringence and confinement loss, but the number of air hole rings has little impact on birefringence.  相似文献   

2.
《Optical Fiber Technology》2013,19(5):461-467
In this paper, we propose and demonstrate a highly birefringent photonic crystal fiber based on a modified octagonal structure for broadband dispersion compensation covering the S, C, and L-communication bands i.e. wavelength ranging from 1460 to 1625 nm. It is shown theoretically that it is possible to obtain negative dispersion coefficient of about −400 to −725 ps/(nm km) over S and L-bands and a relative dispersion slope (RDS) close to that of single mode fiber (SMF) of about 0.0036 nm−1. According to simulation, birefringence of the order 1.81 × 10−2 is obtained at 1.55 μm wavelength. Moreover, effective area, residual dispersion, effective dispersion, confinement loss, and nonlinear coefficient of the proposed modified octagonal photonic crystal fiber (M-OPCF) are also reported and discussed.  相似文献   

3.
We present a dual mode, large core highly birefringent photonic crystal fiber with a photonic cladding composed of elliptical holes ordered in a rectangular lattice. The fiber is made of borosilicate glass and has a regular set of elliptical holes with an aspect ratio of 1.27 and a filling factor near 0.5. The group birefringence (G) and effective mode area were measured at 1550 nm for the fundamental mode and were found to equal 2 × 10?4 and 20 μm2 respectively. We discuss the influence of structural parameters including the ellipticity of the air holes and the aspect ratio of the rectangular lattice on the birefringence and on the fundamental and second modes of the fiber.  相似文献   

4.
《Optical Fiber Technology》2014,20(4):320-324
In this paper, a new photonic crystal fiber (PCF) with two zero dispersion wavelengths (ZDWs) based on the tellurite ellipse core is designed. The air holes in the cladding region have a V-shape distribution, which can increase the birefringence. By adjusting the size of tellurite ellipse core, different birefringence and nonlinearity coefficient can be obtained, and the dispersion can also be tailored. When the long axis of the tellurite ellipse core is 0.5 μm and the short axis is 0.25 μm, the birefringence of 7.66 × 10−2 and nonlinearity of 3400 W−1 km−1 around 1550 nm are obtained. This PCF structure provides a way to get the high birefringence and nonlinearity at the same time, which can find extensive applications in the optical communication and sensor system.  相似文献   

5.
This paper presents an optimum design for highly birefringent hybrid photonic crystal fiber (HyPCF) based on a modified structure for broadband compensation covering the S, C, and L-communication bands i.e. wavelength ranging from 1460 to 1625 nm. The finite element method (FEM) with perfectly matched layer (PML) circular boundary is used to investigate the guiding property. It is demonstrated that it is possible to obtain broadband large negative dispersion, and dispersion coefficient varies from −388.72 to −723.1 ps nm−1 km−1 over S, C and L-bands with relative dispersion slope (RDS) matched to that of single mode fiber (SMF) of about 0.0036 nm−1 at 1550 nm. According to simulation, a five-ring dispersion compensating hybrid cladding photonic crystal fiber (DC-HyPCF) is designed that simultaneously offers birefringence of order 3.79 × 10−2, nonlinear coefficient of 40.1 W−1 km−1 at 1550 nm wavelength. In addition to this, effective area, residual dispersion, and confinement loss of the proposed DC-HyPCF are also reported and discussed.  相似文献   

6.
《Optical Fiber Technology》2013,19(5):468-475
In this paper, two new types of dispersion-flattened photonic crystal fibers (DF-PCFs) with highly nonlinear and ultralow confinement loss are proposed. These new PCF structures adopt hybrid cladding with different air-holes diameters, pitches and air-holes arranged fashions. In order to analyze the proposed PCFs, the full-vector finite element method with anisotropic perfectly matched layers has been used. Results show that the ultra-flattened dispersion of 0.931 ps/(nm km) (DF-PCF1) and 1.533 ps/(nm km) (DF-PCF2) can be achieved in the wavelength range from 1.3 to 1.6 μm with confinement losses lower than 0.001 dB/km in the same wavelength range. Meanwhile, the nonlinear coefficients of our proposed PCFs are greater than 23.83 W−1 km−1 (DF-PCF1) and 29.65 W−1 km−1 (DF-PCF2) at the wavelength of 1.55 μm, and two near-zero dispersion values of 0.328 ps/(nm km) (DF-PCF1) and −0.015 ps/(nm km) (DF-PCF2) can also be obtained at the same wavelength. Furthermore, the influence of manufacturing imperfections of parameters on dispersion and nonlinearity is discussed to verify the robustness of our design.  相似文献   

7.
Single crystal field-effect transistors (FETs) using [6]phenacene and [7]phenacene show p-channel FET characteristics. Field-effect mobilities, μs, as high as 5.6 × 10?1 cm2 V?1 s?1 in a [6]phenacene single crystal FET with an SiO2 gate dielectric and 2.3 cm2 V?1 s?1 in a [7]phenacene single crystal FET were recorded. In these FETs, 7,7,8,8-tetracyanoquinodimethane (TCNQ) was inserted between the Au source/drain electrodes and the single crystal to reduce hole-injection barrier heights. The μ reached 3.2 cm2 V?1 s?1 in the [7]phenacene single crystal FET with a Ta2O5 gate dielectric, and a low absolute threshold voltage |VTH| (6.3 V) was observed. Insertion of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) in the interface produced very a high μ value (4.7–6.7 cm2 V?1 s?1) in the [7]phenacene single crystal FET, indicating that F4TCNQ was better for interface modification than TCNQ. A single crystal electric double-layer FET provided μ as high as 3.8 × 10?1 cm2 V?1 s?1 and |VTH| as low as 2.3 V. These results indicate that [6]phenacene and [7]phenacene are promising materials for future practical FET devices, and in addition we suggest that such devices might also provide a research tool to investigate a material’s potential as a superconductor and a possible new way to produce the superconducting state.  相似文献   

8.
《Optical Fiber Technology》2014,20(5):473-477
We proposed a novel photonic quasi-crystal fiber with near-zero flattened dispersion, highly nonlinear coefficient, and low confinement loss by using the dual concentric core structure. By optimizing the structure parameter, the proposed photonic quasi-crystal fiber can achieve a nonlinear coefficient larger than 33 W−1 km−1 and near-zero flatten dispersion of 0 ± 3.4 ps/nm/km with a near-zero dispersion slope of 8.5 × 10−3 ps/nm2/km at the wavelength of 1550 nm. Near-zero flattened dispersion and low confinement loss in the ultralow order of 10−7 dB/m are simultaneously obtained in the wavelength range from 1373 to 1627 nm. Furthermore, two zero dispersion wavelengths can be achieved in a wide wavelength ranger from 1373 to 1725 nm. From the point of view of practical fabrication, the influence of deviation of each air hole diameter within 3% of imperfections on dispersion, nonlinearity, and is discussed to verify the robustness of our design.  相似文献   

9.
《Optical Fiber Technology》2014,20(4):380-383
We propose an asymmetric elliptical-hole dual-core photonic crystal fiber (AE-DC-PCF) for hydrostatic pressure sensing. The transmission spectra of the AE-DC-PCF under hydrostatic pressure and the relationship between pressure sensitivity and the minor axis ratio at different elliptical ratios have been calculated. Our results show that the AE-DC-PCF has higher pressure sensitivity than that of conventional dual-core photonic crystal (DC-PCF) fiber which has the circular-hole. Based on a 10 cm fiber, the pressure sensitivity of the AE-DC-PCF as high as 50.6 pm/MPa were achieved at 1.55 μm, which is higher than the pressure sensitivity obtained from conventional DC-PCF (32.2 pm/MPa).  相似文献   

10.
《Optical Fiber Technology》2013,19(3):213-218
We present a design of a bending-insensitive single-mode photonic crystal fiber (PCF) based on the existence of a triangular core formed by three neighboring air holes missing in the center of the fiber, and two cladding layers of air holes with different diameters. By optimizing the design parameters, the designed PCF with bending-insensitive characteristics can match the requirements of fiber to the home applications very well. Simulation results show that the designed PCF has an effectively single-mode operation, a small bending loss below 0.15 dB/m for the bending radius of 5 mm, as well as a stable effective mode area of 80 μm2 whatever the designed PCF is straight or bent, which can connect well with conventional single-mode fibers (SMFs).  相似文献   

11.
We describe and characterize a multiplex CARS microspectroscopic system that uses a nanosecond supercontinuum generated from a photonic crystal fiber and a sub-nanosecond pulse laser. This system has a high spectral resolution (<0.1 cm?1) and an ultrabroadband spectral coverage (>2500 cm?1). The estimated spatial resolutions are 0.45 μm (lateral) and 4.5 μm (axial), respectively. This system enables us to obtain CARS spectra and corresponding images in the fingerprint region as well in the CH stretch region. Using this system, we have successfully obtained label-free and multi-mode vibrational images of a yeast cell.  相似文献   

12.
This work addresses a fundamental problem of vertical MOSFETs, that is, inherently deep junctions that exacerbate short channel effects (SCEs). Due to the unconventional asymmetric junction depths in vertical MOSFETs, it is necessary to look separately at the electrostatic influence of each junction. In order to suppress short channel effects better, we explore the formation of a shallow drain junction. This is realized by a self-aligned oxide region, or junction stop (JS) which is formed at the pillar top and acts as a diffusion barrier for shallow junction formation. The benefits of using a JS structure in vertical MOSFETs are demonstrated by simulations which show clearly the effect of asymmetric junctions on SCEs and bulk punch-through. A critical point is identified, where control of SCEs by junction depth is lost and this leads to appropriate junction design in JS vertical sidewall MOSFETs. For a 70 nm channel length the JS structure improves charge sharing by 54 mV and DIBL by 46 mV. For body dopings of 5.0 × 1017 cm?3 and 6.0 × 1017 cm?3 the JS gives improvements in Ioff of 58.7% and 37.8%, respectively, for a given Ion. The inclusion of a retrograde channel gives a further increase in Ion of 586 μA/μm for a body doping of 4.0 × 1018 cm?3.  相似文献   

13.
Photoconductivity and birefringence are two important factors that affect performances of photorefractive devices. Here, the optical properties of this composite based on copoly[6,6′-bis(9-(2-ethylhexyl)carbazole-3-yl)/thieno-(2,5-b)thiophenylidenevinylene] as photoconducting material, 2-[3-[(E)-2(piperidine)-1-ethenyl]-5,5-dimethyl]-2-cyclohexenyliden]malononitrile as nonlinear optical chromophore, butyl benzyl phthalate as plasticizer and C60 as photosensitizer, has been compared to those of the corresponding non-π-conjugated polymer composite. The 50-μm thick photorefractive composite showed a diffraction efficiency 37.2% at 50 V/μm, which corresponded to a Δn of 2.62 × 10?3. When we compare the speeds of the current and the non-conjugated analogue composites, the current composite has about a factor of seven larger speeds due to the π-conjugated polymer backbone. We also discuss and present simple explanation of the observed effect.  相似文献   

14.
The authors report on the fabrication of a silicon/organic heterojunction based IR photodetector. It is demonstrated that an Al/p-Si/perylene-derivative/Al heterostructure exhibits a photovoltaic effect up to 2.7 μm (0.46 eV), a value significantly lower than the bandgap of either material. Although the devices are not optimized, at room temperature a rise time of 300 ns, a responsivity of ≈0.2 mA/W with a specific detectivity of D1  7 × 107 Jones at 1.55 μm is found. The achieved responsivity is two orders of magnitude higher compared to our previous efforts [1], [2]. It will be outlined that the photocurrent originates from an absorption mechanism involving excitation of an electron from the Si valence band into the extended LUMO state in the perylene-derivative, with possible participation of intermediate localized surface state in the organic material.The non-invasive deposition of the organic interlayer onto the Si results in compatibility with the CMOS process, making the presented approach a potential alternative to all inorganic device concepts.  相似文献   

15.
AlGaN/GaN heterostructure field effect transistors (HFETs) were irradiated with 2 MeV protons, carbon, oxygen, iron and krypton ions with fluences ranging from 1 × 109 cm?2 to 1 × 1013 cm?2. DC, pulsed IV characteristics, loadpull and S-parameters of the AlGaN HFET devices were measured before and after irradiation. In parallel, a thick GaN reference layer was also irradiated with the same ions and was characterized by X-ray diffraction, photoluminescence, Hall measurements before and after irradiation. Small changes in the device performance were observed after irradiation with carbon and oxygen at a fluence of 5 × 1010 cm?2. Remarkable changes in device characteristics were seen at a fluence of 1 × 1012 cm?2 for carbon, oxygen, iron and krypton irradiation. Similarly, remarkable changes were also observed in the GaN layer for irradiations with fluence of 1 × 1012 cm?2. The results found on devices and on the GaN layer were compared and correlated.  相似文献   

16.
Cut-off frequency increase from 12.1 GHz to 26.4 GHz, 52.1 GHz and 91.4 GHz is observed when the 1 μm gate length GaN HEMT is laterally scaled down to LG = 0.5 μm, LG = 0.25 μm and LG = 0.125 μm, respectively. The study is based on accurately calibrated transfer characteristics (ID-VGS) of the 1 μm gate length device using Silvaco TCAD. If the scaling is also performed horizontally, proportionally to the lateral (full scaling), the maximum drain current is reduced by 38.2% when the gate-to-channel separation scales from 33 nm to 8.25 nm. Degradation of the RF performance of a GaN HEMT due to the electric field induced acceptor traps experienced under a high electrical stress is found to be about 8% for 1 μm gate length device. The degradation of scaled HEMTs reduces to 3.5% and 7.3% for the 0.25 μm and 0.125 gate length devices, respectively. The traps at energy level of ET = EV + 0.9 eV (carbon) with concentrations of NIT = 5 × 1016cm 3, NIT = 5 × 1017cm 3 and NIT = 5 × 1018cm 3 are located in the drain access region where highest electrical field is expected. The effect of traps on the cut-off frequency is reduced for devices with shorter gate lengths down to 0.125 μm.  相似文献   

17.
《Optical Fiber Technology》2014,20(4):409-413
We report fabrication of a highly nonlinear hybrid microstructured optical fiber composed of chalcogenide glass core and tellurite glass cladding. The flattened chromatic dispersion can be achieved in such an optical fiber with near zero dispersion wavelength at telecommunication wavelengths λ = 1.35–1.7 μm, which cannot be achieved in chalcogenide glass optical fibers due to their high refractive index, i.e. n > 2.1. We demonstrate a hybrid 4-air hole chalcogenide–tellurite optical fiber (Δn = 0.25) with flattened chromatic dispersion around λ = 1.55 μm. In optimized 12-air hole optical fiber composed of the same glasses, the chromatic dispersion values were achieved between −20 and 32 ps/nm/km in a broad wavelength range of 1.5–3.8 μm providing the fiber with extremely high nonlinear coefficient 86,000 km−1W−1. Hybrid chalcogenide/tellurite fibers pumped with the near infrared lasers give good promise for broadband optical amplification, wavelength conversion, and supercontinuum generation in the near- to mid-infrared region.  相似文献   

18.
The discrepancy of rectifying characteristics in n-ZnO:Al/p-Si heterojunctions from diode to diode was demonstrated by region dependent dark IV characteristics, where the junction is laterally cut to sequentially decrease the area. Further investigation shows that the junction (2.1×2.1 cm2) with the barrier height Φ=0.693 eV consists of one part (2.1×1.4 cm2) with Φ=0.695 eV and the other part (2.1×0.7 cm2) with Φ=0.686 eV. It is found that reverse currents saturate with different values of 3.6×10?3, 2.5×10?3 and 1.58×10?3 A for the light IV curves of the three junctions with the same areas. To explain this peculiarity, the probable reason is discussed in terms of carrier transportation through the spatially fluctuating barrier.  相似文献   

19.
Bilayered organic field-effect transistors were fabricated by successive vapor-depositions of 1,4-bis{5-[4-(trifluoromethyl)phenyl]thiophene-2-yl}benzene (AC5-CF3) and 5,5″-bis(4-biphenylyl)-2,2′:5′,2″-terthiophene (BP3T). With decreasing thickness of the n-type AC5-CF3 film in contact with the dielectric layer, ambipolar characteristics were improved under both positive and negative gate biases. Two types of asymmetric source/drain electrodes were prepared by either obliquely shadowed lamination or mask-shifted depositions of AlLi and Au. The latter method in which the device was characterized without exposure to air after the electrode deposition of AlLi resulted in remarkable improvement of ambipolarity and reduction of leak currents. Finally, optimized ambipolar mobilities of μe = 5.00 × 10?2 and μh = 1.56 × 10?2 cm2 V?1 s?1) were obtained with 5-nm-thick AC5-CF3 and 30-nm-thick BP3T.  相似文献   

20.
The study explored titanium dioxide (TiO2) on aluminum gallium arsenide (AlGaAs) prepared by liquid phase deposition (LPD) at 40 °C. The leakage current density was about 8.4 × 10?6 A/cm2 at 1 MV/cm. The interface trap density (Dit) and the flat-band voltage shift (ΔVFB) were 2.3 × 1012 cm?2 eV?1 and 1.2 V, respectively. After rapid thermal annealing (RTA) in the ambient N2 at 350 °C for 1 min, the leakage current density, Dit, and ΔVFB were improved to 2.4 × 10?6 A/cm2 at 1 MV/cm, 7.3 × 1011 cm?2 eV?1, and 1.0 V, respectively. Finally, the study demonstrates the application to the AlGaAs/InGaAs metal–oxide–semiconductor pseudomorphic high-electron-mobility transistor (MOS-PHEMT). The results indicate the potential of the proposed device with a LPD-TiO2 gate oxide for power application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号