首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Based on spatial conforming and nonconforming mixed finite element methods combined with classical L1 time stepping method, two fully-discrete approximate schemes with unconditional stability are first established for the time-fractional diffusion equation with Caputo derivative of order \(0<\alpha <1\). As to the conforming scheme, the spatial global superconvergence and temporal convergence order of \(O(h^2+\tau ^{2-\alpha })\) for both the original variable u in \(H^1\)-norm and the flux \(\vec {p}=\nabla u\) in \(L^2\)-norm are derived by virtue of properties of bilinear element and interpolation postprocessing operator, where h and \(\tau \) are the step sizes in space and time, respectively. At the same time, the optimal convergence rates in time and space for the nonconforming scheme are also investigated by some special characters of \(\textit{EQ}_1^{\textit{rot}}\) nonconforming element, which manifests that convergence orders of \(O(h+\tau ^{2-\alpha })\) and \(O(h^2+\tau ^{2-\alpha })\) for the original variable u in broken \(H^1\)-norm and \(L^2\)-norm, respectively, and approximation for the flux \(\vec {p}\) converging with order \(O(h+\tau ^{2-\alpha })\) in \(L^2\)-norm. Numerical examples are provided to demonstrate the theoretical analysis.  相似文献   

2.
In this paper, a \(C^0\) linear finite element method for biharmonic equations is constructed and analyzed. In our construction, the popular post-processing gradient recovery operators are used to calculate approximately the second order partial derivatives of a \(C^0\) linear finite element function which do not exist in traditional meaning. The proposed scheme is straightforward and simple. More importantly, it is shown that the numerical solution of the proposed method converges to the exact one with optimal orders both under \(L^2\) and discrete \(H^2\) norms, while the recovered numerical gradient converges to the exact one with a superconvergence order. Some novel properties of gradient recovery operators are discovered in the analysis of our method. In several numerical experiments, our theoretical findings are verified and a comparison of the proposed method with the nonconforming Morley element and \(C^0\) interior penalty method is given.  相似文献   

3.
In this paper, we propose a locking-free stabilized mixed finite element method for the linear elasticity problem, which employs a jump penalty term for the displacement approximation. The continuous piecewise k-order polynomial space is used for the stress and the discontinuous piecewise \((k-1)\)-order polynomial space for the displacement, where we require that \(k\ge 3\) in the two dimensions and \(k\ge 4\) in the three dimensions. The method is proved to be stable and k-order convergent for the stress in \(H(\mathrm {div})\)-norm and for the displacement in \(L^2\)-norm. Further, the convergence does not deteriorate in the nearly incompressible or incompressible case. Finally, the numerical results are presented to illustrate the optimal convergence of the stabilized mixed method.  相似文献   

4.
This paper is concerned with the unconditional and optimal \(L^{\infty }\)-error estimates of two fourth-order (in space) compact conservative finite difference time domain schemes for solving the nonlinear Schrödinger equation in two or three space dimensions. The fact of high space dimension and the approximation via compact finite difference discretization bring difficulties in the convergence analysis. The two proposed schemes preserve the total mass and energy in the discrete sense. To establish the optimal convergence results without any constraint on the time step, besides the standard energy method, the cut-off function technique as well as a ‘lifting’ technique are introduced. On the contrast, previous works in the literature often require certain restriction on the time step. The convergence rate of the proposed schemes are proved to be of \(O(h^4+\tau ^2)\) with time step \(\tau \) and mesh size h in the discrete \(L^{\infty }\)-norm. The analysis method can be directly extended to other finite difference schemes for solving the nonlinear Schrödinger-type equations. Numerical results are reported to support our theoretical analysis, and investigate the effect of the nonlinear term and initial data on the blow-up solution.  相似文献   

5.
A linearized Crank–Nicolson Galerkin finite element method with bilinear element for nonlinear Schrödinger equation is studied. By splitting the error into two parts which are called the temporal error and the spatial error, the unconditional superconvergence result is deduced. On one hand, the regularity for a time-discrete system is presented based on the proof of the temporal error. On the other hand, the classical Ritz projection is applied to get the spatial error with order \(O(h^2)\) in \(L^2\)-norm, which plays an important role in getting rid of the restriction of \(\tau \). Then the superclose estimates of order \(O(h^2+\tau ^2)\) in \(H^1\)-norm is arrived at based on the relationship between the Ritz projection and the interpolated operator. At the same time, global superconvergence property is arrived at by the interpolated postprocessing technique. At last, three numerical examples are provided to confirm the theoretical analysis. Here, h is the subdivision parameter and \(\tau \) is the time step.  相似文献   

6.
A fourth-order compact algorithm is discussed for solving the time fractional diffusion-wave equation with Neumann boundary conditions. The \(L1\) discretization is applied for the time-fractional derivative and the compact difference approach for the spatial discretization. The unconditional stability and the global convergence of the compact difference scheme are proved rigorously, where a new inner product is introduced for the theoretical analysis. The convergence order is \(\mathcal{O }(\tau ^{3-\alpha }+h^4)\) in the maximum norm, where \(\tau \) is the temporal grid size and \(h\) is the spatial grid size, respectively. In addition, a Crank–Nicolson scheme is presented and the corresponding error estimates are also established. Meanwhile, a compact ADI difference scheme for solving two-dimensional case is derived and the global convergence order of \(\mathcal{O }(\tau ^{3-\alpha }+h_1^4+h_2^4)\) is given. Then extension to the case with Robin boundary conditions is also discussed. Finally, several numerical experiments are included to support the theoretical results, and some comparisons with the Crank–Nicolson scheme are presented to show the effectiveness of the compact scheme.  相似文献   

7.
This paper introduces a numerical scheme for the time-harmonic Maxwell equations by using weak Galerkin (WG) finite element methods. The WG finite element method is based on two operators: discrete weak curl and discrete weak gradient, with appropriately defined stabilizations that enforce a weak continuity of the approximating functions. This WG method is highly flexible by allowing the use of discontinuous approximating functions on arbitrary shape of polyhedra and, at the same time, is parameter free. Optimal-order of convergence is established for the WG approximations in various discrete norms which are either \(H^1\)-like or \(L^2\) and \(L^2\)-like. An effective implementation of the WG method is developed through variable reduction by following a Schur-complement approach, yielding a system of linear equations involving unknowns associated with element boundaries only. Numerical results are presented to confirm the theory of convergence.  相似文献   

8.
In this paper, we develop local discontinuous Galerkin method for the two-dimensional coupled system of incompressible miscible displacement problem. Optimal error estimates in \(L^{\infty }(0, T; L^{2})\) for concentration c, \(L^{2}(0, T; L^{2})\) for \(\nabla c\) and \(L^{\infty }(0, T; L^{2})\) for velocity \(\mathbf{u}\) are derived. The main techniques in the analysis include the treatment of the inter-element jump terms which arise from the discontinuous nature of the numerical method, the nonlinearity, and the coupling of the models. The main difficulty is how to treat the inter-element discontinuities of two independent solution variables (one from the flow equation and the other from the transport equation) at cell interfaces. Numerical experiments are shown to demonstrate the theoretical results.  相似文献   

9.
In this paper, a discontinuous finite volume element method was presented to solve the nonstationary Stokes–Darcy problem for the coupling fluid flow in conduits with porous media flow. The proposed numerical method is constructed on a baseline finite element family of discontinuous linear elements for the approximation of the velocity and hydraulic head, whereas the pressure is approximated by piecewise constant elements. The unique solvability of the approximate solution for the discrete problem is derived. Optimal error estimates of the semi-discretization and full discretization with backward Euler scheme in standard \(L^2\)-norm and broken \(H^1\)-norm are obtained for three discontinuous finite volume element methods (symmetric, non-symmetric and incomplete types). A series of numerical experiments are provided to illustrate the features of the proposed method, such as the optimal accuracy orders, mass conservation, capability to deal with complicated geometries, and applicability to the problems with realistic parameters.  相似文献   

10.
A set of high-order compact finite difference methods is proposed for solving a class of Caputo-type fractional sub-diffusion equations in conservative form. The diffusion coefficient of the equation may be spatially variable, and the proposed methods have the global convergence order \(\mathcal{O}(\tau ^{r}+h^{4})\), where \(r\ge 2\) is a positive integer and \(\tau \) and h are the temporal and spatial steps. Such new high-order compact difference methods greatly improve the known methods in the literature. The local truncation error and the solvability of the methods are discussed in detail. By applying a discrete energy technique to the matrix form of the methods, a rigorous theoretical analysis of the stability and convergence of the methods is carried out for the case of \(2\le r\le 6\), and the optimal error estimates in the weighted \(H^{1}\), \(L^{2}\) and \(L^{\infty }\) norms are obtained for the general case of variable coefficient. Applications are given to two model problems, and some numerical results are presented to illustrate the various convergence orders of the methods.  相似文献   

11.
A new weak Galerkin (WG) finite element method is developed and analyzed for solving second order elliptic problems with low regularity solutions in the Sobolev space \(W^{2,p}(\Omega )\) with \(p\in (1,2)\). A WG stabilizer was introduced by Wang and Ye (Math Comput 83:2101–2126, 2014) for a simpler variational formulation, and it has been commonly used since then in the WG literature. In this work, for the purpose of dealing with low regularity solutions, we propose to generalize the stabilizer of Wang and Ye by introducing a positive relaxation index to the mesh size h. The relaxed stabilization gives rise to a considerable flexibility in treating weak continuity along the interior element edges. When the norm index \(p\in (1,2]\), we strictly derive that the WG error in energy norm has an optimal convergence order \(O(h^{l+1-\frac{1}{p}-\frac{p}{4}})\) by taking the relaxed factor \(\beta =1+\frac{2}{p}-\frac{p}{2}\), and it also has an optimal convergence order \(O(h^{l+2-\frac{2}{p}})\) in \(L^2\) norm when the solution \(u\in W^{l+1,p}\) with \(p\in [1,1+\frac{2}{p}-\frac{p}{2}]\) and \(l\ge 1\). It is recovered for \(p=2\) that with the choice of \(\beta =1\), error estimates in the energy and \(L^2\) norms are optimal for the source term in the sobolev space \(L^2\). Weak variational forms of the WG method give rise to desirable flexibility in enforcing boundary conditions and can be easily implemented without requiring a sufficiently large penalty factor as in the usual discontinuous Galerkin methods. In addition, numerical results illustrate that the proposed WG method with an over-relaxed factor \(\beta (\ge 1)\) converges at optimal algebraic rates for several low regularity elliptic problems.  相似文献   

12.
In recent years, sparse representation-based classification (SRC) has made great progress in face recognition (FR). However, SRC emphasizes noise sparsity too much and it is not suitable for the real world. In this paper, we propose a robust \(l_{2,1}\)-norm Sparse Representation framework that constrains the noise penalty by the \(l_{2,1}\)-norm. The \(l_{2,1} \)-norm takes advantage of both the discriminative nature of the \(l_1 \)-norm and the systemic representation of the \(l_2 \)-norm. In addition, we use the nuclear norm to constrain the coefficient matrix. Motivated by the Fisher criterion, we propose the Fisher discriminant-based \(l_{2,1} \)-norm sparse representation method for FR which utilizes a supervised approach. Thus, we consider the within-class scatter and between-class scatter when all of the label information is available. The paper shows that the model can provide stronger discriminant power than the classical sparse representation models and can be solved by the alternating direction method of multiplier. Additionally, it is robust to the contiguous occlusion noise. Extensive experiments demonstrate that our method achieves significantly better results than SRC and some other sparse representation methods for FR when addressing large regions with contiguous occlusion.  相似文献   

13.
In this paper, we present unconditionally optimal error estimates of linearized Crank–Nicolson Galerkin finite element methods for a strongly nonlinear parabolic system in \(\mathbb {R}^d\ (d=2,3)\). However, all previous works required certain time-step conditions that were dependent on the spatial mesh size. In order to overcome several entitative difficulties caused by the strong nonlinearity of the system, the proof takes two steps. First, by using a temporal-spatial error splitting argument and a new technique, optimal \(L^2\) error estimates of the numerical schemes can be obtained under the condition \(\tau \ge h\), where \(\tau \) denotes the time-step size and h is the spatial mesh size. Second, we obtain the boundedness of numerical solutions by mathematical induction and inverse inequality when \(\tau \le h\). Then, optimal \(L^2\) and \(H^1\) error estimates are proved in a different way for such case. Numerical results are given to illustrate our theoretical analyses.  相似文献   

14.
A novel discontinuous Galerkin (DG) method is developed to solve time-dependent bi-harmonic type equations involving fourth derivatives in one and multiple space dimensions. We present the spatial DG discretization based on a mixed formulation and central interface numerical fluxes so that the resulting semi-discrete schemes are \(L^2\) stable even without interior penalty. For time discretization, we use Crank–Nicolson so that the resulting scheme is unconditionally stable and second order in time. We present the optimal \(L^2\) error estimate of \(O(h^{k+1})\) for polynomials of degree k for semi-discrete DG schemes, and the \(L^2\) error of \(O(h^{k+1} +(\Delta t)^2)\) for fully discrete DG schemes. Extensions to more general fourth order partial differential equations and cases with non-homogeneous boundary conditions are provided. Numerical results are presented to verify the stability and accuracy of the schemes. Finally, an application to the one-dimensional Swift–Hohenberg equation endowed with a decay free energy is presented.  相似文献   

15.
This work is concerned with the study of two-level penalty finite element method for the 2D/3D stationary incompressible magnetohydrodynamics equations. The new method is an interesting combination of the Newton iteration and two-level penalty finite element algorithm with two different finite element pairs \(P_{1}b\)-\(P_{1}\)-\(P_{1}b\) and \(P_{1}\)-\(P_{0}\)-\(P_{1}\). Moreover, the rigorous analysis of stability and error estimate for the proposed method are given. Numerical results verify the theoretical results and show the applicability and effectiveness of the presented scheme.  相似文献   

16.
This paper aims to develop new and fast algorithms for recovering a sparse vector from a small number of measurements, which is a fundamental problem in the field of compressive sensing (CS). Currently, CS favors incoherent systems, in which any two measurements are as little correlated as possible. In reality, however, many problems are coherent, and conventional methods such as \(L_1\) minimization do not work well. Recently, the difference of the \(L_1\) and \(L_2\) norms, denoted as \(L_1\)\(L_2\), is shown to have superior performance over the classic \(L_1\) method, but it is computationally expensive. We derive an analytical solution for the proximal operator of the \(L_1\)\(L_2\) metric, and it makes some fast \(L_1\) solvers such as forward–backward splitting (FBS) and alternating direction method of multipliers (ADMM) applicable for \(L_1\)\(L_2\). We describe in details how to incorporate the proximal operator into FBS and ADMM and show that the resulting algorithms are convergent under mild conditions. Both algorithms are shown to be much more efficient than the original implementation of \(L_1\)\(L_2\) based on a difference-of-convex approach in the numerical experiments.  相似文献   

17.
In this work we introduce and analyze a novel Hybrid High-Order method for the steady incompressible Navier–Stokes equations. The proposed method is inf-sup stable on general polyhedral meshes, supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possibility of statically condensing a subset of the unknowns at each nonlinear iteration. We show under general assumptions the existence of a discrete solution, which is also unique provided a data smallness condition is verified. Using a compactness argument, we prove convergence of the sequence of discrete solutions to minimal regularity exact solutions for general data. For more regular solutions, we prove optimal convergence rates for the energy-norm of the velocity and the \(L^2\)-norm of the pressure under a standard data smallness assumption. More precisely, when polynomials of degree \(k\ge 0\) at mesh elements and faces are used, both quantities are proved to converge as \(h^{k+1}\) (with h denoting the meshsize).  相似文献   

18.
In this article, a two-grid block-centered finite difference scheme is introduced and analyzed to solve the nonlinear time-fractional parabolic equation. This method is considered where the nonlinear problem is solved only on a coarse grid of size H and a linear problem is solved on a fine grid of size h. Stability results are proven rigorously. Error estimates are established on non-uniform rectangular grid which show that the discrete \(L^{\infty }(L^2)\) and \(L^2(H^1)\) errors are \(O(\triangle t^{2-\alpha }+h^2+H^3)\). Finally, some numerical experiments are presented to show the efficiency of the two-grid method and verify that the convergence rates are in agreement with the theoretical analysis.  相似文献   

19.
In this paper, we propose a hybridized discontinuous Galerkin (HDG) method with reduced stabilization for the Poisson equation. The reduce stabilization proposed here enables us to use piecewise polynomials of degree \(k\) and \(k-1\) for the approximations of element and inter-element unknowns, respectively, unlike the standard HDG methods. We provide the error estimates in the energy and \(L^2\) norms under the chunkiness condition. In the case of \(k=1\), it can be shown that the proposed method is closely related to the Crouzeix–Raviart nonconforming finite element method. Numerical results are presented to verify the validity of the proposed method.  相似文献   

20.
In this paper, we consider the nonlinear boundary value problems involving the Caputo fractional derivatives of order \(\alpha \in (1,2)\) on the interval (0, T). We present a Legendre spectral collocation method for the Caputo fractional boundary value problems. We derive the error bounds of the Legendre collocation method under the \(L^2\)- and \(L^\infty \)-norms. Numerical experiments are included to illustrate the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号