首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper considers the quantum query complexity of almost all functions in the set \({\mathcal{F}}_{N,M}\) of \({N}\)-variable Boolean functions with on-set size \({M (1\le M \le 2^{N}/2)}\), where the on-set size is the number of inputs on which the function is true. The main result is that, for all functions in \({\mathcal{F}}_{N,M}\) except its polynomially small fraction, the quantum query complexity is \({ \Theta\left(\frac{\log{M}}{c + \log{N} - \log\log{M}} + \sqrt{N}\right)}\) for a constant \({c > 0}\). This is quite different from the quantum query complexity of the hardest function in \({\mathcal{F}}_{N,M}\): \({\Theta\left(\sqrt{N\frac{\log{M}}{c + \log{N} - \log\log{M}}} + \sqrt{N}\right)}\). In contrast, almost all functions in \({\mathcal{F}}_{N,M}\) have the same randomized query complexity \({\Theta(N)}\) as the hardest one, up to a constant factor.  相似文献   

2.
The construction of unextendible maximally entangled bases is tightly related to quantum information processing like local state discrimination. We put forward two constructions of UMEBs in \({\mathbb {C}}^{pd}\otimes {\mathbb {C}}^{qd}\)(\(p\le q\)) based on the constructions of UMEBs in \({\mathbb {C}}^{d}\otimes {\mathbb {C}}^{d}\) and in \({\mathbb {C}}^{p}\otimes {\mathbb {C}}^{q}\), which generalizes the results in Guo (Phys Rev A 94:052302, 2016) by two approaches. Two different 48-member UMEBs in \({\mathbb {C}}^{6}\otimes {\mathbb {C}}^{9}\) have been constructed in detail.  相似文献   

3.
We initiate studying the Remote Set Problem (\({\mathsf{RSP}}\)) on lattices, which given a lattice asks to find a set of points containing a point which is far from the lattice. We show a polynomial-time deterministic algorithm that on rank n lattice \({\mathcal{L}}\) outputs a set of points, at least one of which is \({\sqrt{\log n / n} \cdot \rho(\mathcal{L})}\) -far from \({\mathcal{L}}\) , where \({\rho(\mathcal{L})}\) stands for the covering radius of \({\mathcal{L}}\) (i.e., the maximum possible distance of a point in space from \({\mathcal{L}}\)). As an application, we show that the covering radius problem with approximation factor \({\sqrt{n / \log n}}\) lies in the complexity class \({\mathsf{NP}}\) , improving a result of Guruswami et al. (Comput Complex 14(2): 90–121, 2005) by a factor of \({\sqrt{\log n}}\) .Our results apply to any \({\ell_p}\) norm for \({2 \leq p \leq \infty}\) with the same approximation factors (except a loss of \({\sqrt{\log \log n}}\) for \({p = \infty}\)). In addition, we show that the output of our algorithm for \({\mathsf{RSP}}\) contains a point whose \({\ell_2}\) distance from \({\mathcal{L}}\) is at least \({(\log n/n)^{1/p} \cdot \rho^{(p)}(\mathcal{L})}\) , where \({\rho^{(p)}(\mathcal{L})}\) is the covering radius of \({\mathcal{L}}\) measured with respect to the \({\ell_p}\) norm. The proof technique involves a theorem on balancing vectors due to Banaszczyk (Random Struct Algorithms 12(4):351–360, 1998) and the “six standard deviations” theorem of Spencer (Trans Am Math Soc 289(2):679–706, 1985).  相似文献   

4.
A way of constructing special entangled basis with fixed Schmidt number 2 (SEB2) in \({\mathbb {C}}^3 \otimes {\mathbb {C}}^{4k}(k\in z^+,3\not \mid k)\) is proposed, and the conditions mutually unbiased SEB2s (MUSEB2s) satisfy are discussed. In addition, a very easy way of constructing MUSEB2s in \({\mathbb {C}}^3 \otimes {\mathbb {C}}^{4k}(k=2^l)\) is presented. We first establish the concrete construction of SEB2 and MUSEB2s in \({\mathbb {C}}^3 \otimes {\mathbb {C}}^{4}\) and \({\mathbb {C}}^3 \otimes {\mathbb {C}}^{8}\), respectively, and then generalize them into \({\mathbb {C}}^3 \otimes {\mathbb {C}}^{4k}(k\in z^+,3\not \mid k)\) and display the condition that MUSEB2s satisfy; we also give general form of two MUSEB2s as examples in \({\mathbb {C}}^3 \otimes {\mathbb {C}}^{4k}(k=2^l)\).  相似文献   

5.
This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints:
$$\begin{aligned} \text {minimize} ~~&f_1(\mathbf{x}_1) + \cdots + f_N(\mathbf{x}_N)\\ \text {subject to}~~&A_1 \mathbf{x}_1 ~+ \cdots + A_N\mathbf{x}_N =c,\\&\mathbf{x}_1\in {\mathcal {X}}_1,~\ldots , ~\mathbf{x}_N\in {\mathcal {X}}_N, \end{aligned}$$
where \(N \ge 2\), \(f_i\) are convex functions, \(A_i\) are matrices, and \({\mathcal {X}}_i\) are feasible sets for variable \(\mathbf{x}_i\). Our algorithm extends the alternating direction method of multipliers (ADMM) and decomposes the original problem into N smaller subproblems and solves them in parallel at each iteration. This paper shows that the classic ADMM can be extended to the N-block Jacobi fashion and preserve convergence in the following two cases: (i) matrices \(A_i\) are mutually near-orthogonal and have full column-rank, or (ii) proximal terms are added to the N subproblems (but without any assumption on matrices \(A_i\)). In the latter case, certain proximal terms can let the subproblem be solved in more flexible and efficient ways. We show that \(\Vert {\mathbf {x}}^{k+1} - {\mathbf {x}}^k\Vert _M^2\) converges at a rate of o(1 / k) where M is a symmetric positive semi-definte matrix. Since the parameters used in the convergence analysis are conservative, we introduce a strategy for automatically tuning the parameters to substantially accelerate our algorithm in practice. We implemented our algorithm (for the case ii above) on Amazon EC2 and tested it on basis pursuit problems with >300 GB of distributed data. This is the first time that successfully solving a compressive sensing problem of such a large scale is reported.
  相似文献   

6.
Structural properties of u-constacyclic codes over the ring \({\mathbb {F}}_p+u{\mathbb {F}}_p\) are given, where p is an odd prime and \(u^2=1\). Under a special Gray map from \({\mathbb {F}}_p+u{\mathbb {F}}_p\) to \({\mathbb {F}}_p^2\), some new non-binary quantum codes are obtained by this class of constacyclic codes.  相似文献   

7.
In this paper, we focus on the design of an exact exponential time algorithm with a proved worst-case running time for 3-machine flowshop scheduling problems considering worst-case scenarios. For the minimization of the makespan criterion, a Dynamic Programming algorithm running in \({\mathcal {O}}^*(3^n)\) is proposed, which improves the current best-known time complexity \(2^{{\mathcal {O}}(n)}\times \Vert I\Vert ^{{\mathcal {O}}(1)}\) in the literature. The idea is based on a dominance condition and the consideration of the Pareto Front in the criteria space. The algorithm can be easily generalized to other problems that have similar structures. The generalization on two problems, namely the \(F3\Vert f_\mathrm{max}\) and \(F3\Vert \sum f_i\) problems, is discussed.  相似文献   

8.
Three results are shown on producibility in the hierarchical model of tile self-assembly. It is shown that a simple greedy polynomial-time strategy decides whether an assembly α is producible. The algorithm can be optimized to use \(O(|\alpha | \log ^2 |\alpha |)\) time. Cannon et al. (STACS 2013: proceedings of the thirtieth international symposium on theoretical aspects of computer science. pp 172–184, 2013) showed that the problem of deciding if an assembly α is the unique producible terminal assembly of a tile system \({\mathcal {T}}\) can be solved in \(O(|\alpha |^2 |{\mathcal {T}}| + |\alpha | |{\mathcal {T}}|^2)\) time for the special case of noncooperative “temperature 1” systems. It is shown that this can be improved to \(O(|\alpha | |{\mathcal {T}}| \log |{\mathcal {T}}|)\) time. Finally, it is shown that if two assemblies are producible, and if they can be overlapped consistently—i.e., if the positions that they share have the same tile type in each assembly—then their union is also producible.  相似文献   

9.
In the present paper, we propose a new method to inexpensively determine a suitable value of the regularization parameter and an associated approximate solution, when solving ill-conditioned linear system of equations with multiple right-hand sides contaminated by errors. The proposed method is based on the symmetric block Lanczos algorithm, in connection with block Gauss quadrature rules to inexpensively approximate matrix-valued function of the form \(W^Tf(A)W\), where \(W\in {\mathbb {R}}^{n\times k}\), \(k\ll n\), and \(A\in {\mathbb {R}}^{n\times n}\) is a symmetric matrix.  相似文献   

10.
We construct two sets of incomplete and extendible quantum pure orthogonal product states (POPS) in general bipartite high-dimensional quantum systems, which are all indistinguishable by local operations and classical communication. The first set of POPS is composed of two parts which are \(\mathcal {C}^m\otimes \mathcal {C}^{n_1}\) with \(5\le m\le n_1\) and \(\mathcal {C}^m\otimes \mathcal {C}^{n_2}\) with \(5\le m \le n_2\), where \(n_1\) is odd and \(n_2\) is even. The second one is in \(\mathcal {C}^m\otimes \mathcal {C}^n\) \((m, n\ge 4)\). Some subsets of these two sets can be extended into complete sets that local indistinguishability can be decided by noncommutativity which quantifies the quantumness of a quantum ensemble. Our study shows quantum nonlocality without entanglement.  相似文献   

11.
Let \(H_{1}, H_{2},\ldots ,H_{n}\) be separable complex Hilbert spaces with \(\dim H_{i}\ge 2\) and \(n\ge 2\). Assume that \(\rho \) is a state in \(H=H_1\otimes H_2\otimes \cdots \otimes H_n\). \(\rho \) is called strong-k-separable \((2\le k\le n)\) if \(\rho \) is separable for any k-partite division of H. In this paper, an entanglement witnesses criterion of strong-k-separability is obtained, which says that \(\rho \) is not strong-k-separable if and only if there exist a k-division space \(H_{m_{1}}\otimes \cdots \otimes H_{m_{k}}\) of H, a finite-rank linear elementary operator positive on product states \(\Lambda :\mathcal {B}(H_{m_{2}}\otimes \cdots \otimes H_{m_{k}})\rightarrow \mathcal {B}(H_{m_{1}})\) and a state \(\rho _{0}\in \mathcal {S}(H_{m_{1}}\otimes H_{m_{1}})\), such that \(\mathrm {Tr}(W\rho )<0\), where \(W=(\mathrm{Id}\otimes \Lambda ^{\dagger })\rho _{0}\) is an entanglement witness. In addition, several different methods of constructing entanglement witnesses for multipartite states are also given.  相似文献   

12.
Given a distributed system of \(n\) balls and \(n\) bins, how evenly can we distribute the balls to the bins, minimizing communication? The fastest non-adaptive and symmetric algorithm achieving a constant maximum bin load requires \(\varTheta (\log \log n)\) rounds, and any such algorithm running for \(r\in {\mathcal {O}}(1)\) rounds incurs a bin load of \(\varOmega ((\log n/\log \log n)^{1/r})\). In this work, we explore the fundamental limits of the general problem. We present a simple adaptive symmetric algorithm that achieves a bin load of 2 in \(\log ^* n+{\mathcal {O}}(1)\) communication rounds using \({\mathcal {O}}(n)\) messages in total. Our main result, however, is a matching lower bound of \((1-o(1))\log ^* n\) on the time complexity of symmetric algorithms that guarantee small bin loads. The essential preconditions of the proof are (i) a limit of \({\mathcal {O}}(n)\) on the total number of messages sent by the algorithm and (ii) anonymity of bins, i.e., the port numberings of balls need not be globally consistent. In order to show that our technique yields indeed tight bounds, we provide for each assumption an algorithm violating it, in turn achieving a constant maximum bin load in constant time.  相似文献   

13.
We consider the set \(\mathcal {P}\) of real parameters associated to a fuzzy number, in a general form which includes the most important characteristics already introduced for fuzzy numbers. We find the set \(\mathcal {P}_{\mathrm{s}}\subset \mathcal {P}\) with the property that for any given fuzzy number there exists at least a symmetric triangular fuzzy number which preserves a fixed parameter \(p\in \mathcal {P}\). We compute the symmetric triangular approximation of a fuzzy number which preserves the parameter \(p\in \mathcal {P }_{\mathrm{s}}\). The uniqueness is an immediate consequence; therefore, an approximation operator is obtained. The properties of scale and translation invariance, additivity and continuity of this operator are studied. Some applications related with value and expected value, as important parameters, are given too.  相似文献   

14.
We study the problem of distinguishing maximally entangled quantum states by using local operations and classical communication (LOCC). A question of fundamental interest is whether any three maximally entangled states in \({\mathbb {C}}^d\otimes {\mathbb {C}}^d (d\ge 4)\) are distinguishable by LOCC. In this paper, we restrict ourselves to consider the generalized Bell states. And we prove that any three generalized Bell states in \({\mathbb {C}}^d\otimes {\mathbb {C}}^d (d\ge 4)\) are locally distinguishable.  相似文献   

15.
Based on spatial conforming and nonconforming mixed finite element methods combined with classical L1 time stepping method, two fully-discrete approximate schemes with unconditional stability are first established for the time-fractional diffusion equation with Caputo derivative of order \(0<\alpha <1\). As to the conforming scheme, the spatial global superconvergence and temporal convergence order of \(O(h^2+\tau ^{2-\alpha })\) for both the original variable u in \(H^1\)-norm and the flux \(\vec {p}=\nabla u\) in \(L^2\)-norm are derived by virtue of properties of bilinear element and interpolation postprocessing operator, where h and \(\tau \) are the step sizes in space and time, respectively. At the same time, the optimal convergence rates in time and space for the nonconforming scheme are also investigated by some special characters of \(\textit{EQ}_1^{\textit{rot}}\) nonconforming element, which manifests that convergence orders of \(O(h+\tau ^{2-\alpha })\) and \(O(h^2+\tau ^{2-\alpha })\) for the original variable u in broken \(H^1\)-norm and \(L^2\)-norm, respectively, and approximation for the flux \(\vec {p}\) converging with order \(O(h+\tau ^{2-\alpha })\) in \(L^2\)-norm. Numerical examples are provided to demonstrate the theoretical analysis.  相似文献   

16.
This paper refines the main result of [1], where the limit \( - {e^{ - a}} - a{e^{ - a}}\left[ {1 - {e^{ - c\sqrt a }}} \right]\) was proved for the probability of encountering an accidental similarity between two parent examples without \(m = c\sqrt n \) counter examples if each parent example and counter example is described by a series of \(\sqrt n \) independent Bernoulli trials with success probability \(p = \sqrt {a/n} \). In this paper, we prove that the rate of convergence to the limit is proportional to \({n^{\frac{1}{2}}}\).  相似文献   

17.
This paper studies the problem of approximating a function f in a Banach space \(\mathcal{X}\) from measurements \(l_j(f)\), \(j=1,\ldots ,m\), where the \(l_j\) are linear functionals from \(\mathcal{X}^*\). Quantitative results for such recovery problems require additional information about the sought after function f. These additional assumptions take the form of assuming that f is in a certain model class \(K\subset \mathcal{X}\). Since there are generally infinitely many functions in K which share these same measurements, the best approximation is the center of the smallest ball B, called the Chebyshev ball, which contains the set \(\bar{K}\) of all f in K with these measurements. Therefore, the problem is reduced to analytically or numerically approximating this Chebyshev ball. Most results study this problem for classical Banach spaces \(\mathcal{X}\) such as the \(L_p\) spaces, \(1\le p\le \infty \), and for K the unit ball of a smoothness space in \(\mathcal{X}\). Our interest in this paper is in the model classes \(K=\mathcal{K}(\varepsilon ,V)\), with \(\varepsilon >0\) and V a finite dimensional subspace of \(\mathcal{X}\), which consists of all \(f\in \mathcal{X}\) such that \(\mathrm{dist}(f,V)_\mathcal{X}\le \varepsilon \). These model classes, called approximation sets, arise naturally in application domains such as parametric partial differential equations, uncertainty quantification, and signal processing. A general theory for the recovery of approximation sets in a Banach space is given. This theory includes tight a priori bounds on optimal performance and algorithms for finding near optimal approximations. It builds on the initial analysis given in Maday et al. (Int J Numer Method Eng 102:933–965, 2015) for the case when \(\mathcal{X}\) is a Hilbert space, and further studied in Binev et al. (SIAM UQ, 2015). It is shown how the recovery problem for approximation sets is connected with well-studied concepts in Banach space theory such as liftings and the angle between spaces. Examples are given that show how this theory can be used to recover several recent results on sampling and data assimilation.  相似文献   

18.
New hybridized discontinuous Galerkin (HDG) methods for the interface problem for elliptic equations are proposed. Unknown functions of our schemes are \(u_h\) in elements and \(\hat{u}_h\) on inter-element edges. That is, we formulate our schemes without introducing the flux variable. We assume that subdomains \(\Omega _1\) and \(\Omega _2\) are polyhedral domains and that the interface \(\Gamma =\partial \Omega _1\cap \partial \Omega _2\) is polyhedral surface or polygon. Moreover, \(\Gamma \) is assumed to be expressed as the union of edges of some elements. We deal with the case where the interface is transversely connected with the boundary of the whole domain \(\overline{\Omega }=\overline{\Omega _1\cap \Omega _2}\). Consequently, the solution u of the interface problem may not have a sufficient regularity, say \(u\in H^2(\Omega )\) or \(u|_{\Omega _1}\in H^2(\Omega _1)\), \(u|_{\Omega _2}\in H^2(\Omega _2)\). We succeed in deriving optimal order error estimates in an HDG norm and the \(L^2\) norm under low regularity assumptions of solutions, say \(u|_{\Omega _1}\in H^{1+s}(\Omega _1)\) and \(u|_{\Omega _2}\in H^{1+s}(\Omega _2)\) for some \(s\in (1/2,1]\), where \(H^{1+s}\) denotes the fractional order Sobolev space. Numerical examples to validate our results are also presented.  相似文献   

19.
We begin by investigating relationships between two forms of Hilbert–Schmidt two-rebit and two-qubit “separability functions”—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas–Andai framework, the independent variable \(\varepsilon \in [0,1]\) is the ratio \(\sigma (V)\) of the singular values of the \(2 \times 2\) matrix \(V=D_2^{1/2} D_1^{-1/2}\) formed from the two \(2 \times 2\) diagonal blocks (\(D_1, D_2\)) of a \(4 \times 4\) density matrix \(D= \left||\rho _{ij}\right||\). In the Slater setting, the independent variable \(\mu \) is the diagonal-entry ratio \(\sqrt{\frac{\rho _{11} \rho _ {44}}{\rho _ {22} \rho _ {33}}}\)—with, of central importance, \(\mu =\varepsilon \) or \(\mu =\frac{1}{\varepsilon }\) when both \(D_1\) and \(D_2\) are themselves diagonal. Lovas and Andai established that their two-rebit “separability function” \(\tilde{\chi }_1 (\varepsilon )\) (\(\approx \varepsilon \)) yields the previously conjectured Hilbert–Schmidt separability probability of \(\frac{29}{64}\). We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and “two-octo[nionic]-bit” counterparts, \(\tilde{\chi _2}(\varepsilon ) =\frac{1}{3} \varepsilon ^2 \left( 4-\varepsilon ^2\right) \), \(\tilde{\chi _4}(\varepsilon ) =\frac{1}{35} \varepsilon ^4 \left( 15 \varepsilon ^4-64 \varepsilon ^2+84\right) \) and \(\tilde{\chi _8} (\varepsilon )= \frac{1}{1287}\varepsilon ^8 \left( 1155 \varepsilon ^8-7680 \varepsilon ^6+20160 \varepsilon ^4-25088 \varepsilon ^2+12740\right) \). These immediately lead to predictions of Hilbert–Schmidt separability/PPT-probabilities of \(\frac{8}{33}\), \(\frac{26}{323}\) and \(\frac{44482}{4091349}\), in full agreement with those of the “concise formula” (Slater in J Phys A 46:445302, 2013), and, additionally, of a “specialized induced measure” formula. Then, we find a Lovas–Andai “master formula,” \(\tilde{\chi _d}(\varepsilon )= \frac{\varepsilon ^d \Gamma (d+1)^3 \, _3\tilde{F}_2\left( -\frac{d}{2},\frac{d}{2},d;\frac{d}{2}+1,\frac{3 d}{2}+1;\varepsilon ^2\right) }{\Gamma \left( \frac{d}{2}+1\right) ^2}\), encompassing both even and odd values of d. Remarkably, we are able to obtain the \(\tilde{\chi _d}(\varepsilon )\) formulas, \(d=1,2,4\), applicable to full (9-, 15-, 27-) dimensional sets of density matrices, by analyzing (6-, 9, 15-) dimensional sets, with not only diagonal \(D_1\) and \(D_2\), but also an additional pair of nullified entries. Nullification of a further pair still leads to X-matrices, for which a distinctly different, simple Dyson-index phenomenon is noted. C. Koutschan, then, using his HolonomicFunctions program, develops an order-4 recurrence satisfied by the predictions of the several formulas, establishing their equivalence. A two-qubit separability probability of \(1-\frac{256}{27 \pi ^2}\) is obtained based on the operator monotone function \(\sqrt{x}\), with the use of \(\tilde{\chi _2}(\varepsilon )\).  相似文献   

20.
This paper proposes a cost-efficient quantum multiplier–accumulator unit. The paper also presents a fast multiplication algorithm and designs a novel quantum multiplier device based on the proposed algorithm with the optimum time complexity as multiplier is the major device of a multiplier–accumulator unit. We show that the proposed multiplication technique has time complexity \(O((3 {\hbox {log}}_{2}n)+1)\), whereas the best known existing technique has \(O(n{\hbox {log}}_{2} n)\), where n is the number of qubits. In addition, our design proposes three new quantum circuits: a circuit representing a quantum full-adder, a circuit known as quantum ANDing circuit, which performs the ANDing operation and a circuit presenting quantum accumulator. Moreover, the proposed quantum multiplier–accumulator unit is the first ever quantum multiplier–accumulator circuit in the literature till now, which has reduced garbage outputs and ancillary inputs to a great extent. The comparative study shows that the proposed quantum multiplier performs better than the existing multipliers in terms of depth, quantum gates, delays, area and power with the increasing number of qubits. Moreover, we design the proposed quantum multiplier–accumulator unit, which performs better than the existing ones in terms of hardware and delay complexities, e.g., the proposed (\(n\times n\))—qubit quantum multiplier–accumulator unit requires \(O(n^{2})\) hardware and \(O({\hbox {log}}_{2}n)\) delay complexities, whereas the best known existing quantum multiplier–accumulator unit requires \(O(n^{3})\) hardware and \(O((n-1)^{2} +1+n)\) delay complexities. In addition, the proposed design achieves an improvement of 13.04, 60.08 and 27.2% for \(4\times 4\), 7.87, 51.8 and 27.1% for \(8\times 8\), 4.24, 52.14 and 27% for \(16\times 16\), 2.19, 52.15 and 27.26% for \(32 \times 32\) and 0.78, 52.18 and 27.28% for \(128 \times 128\)-qubit multiplications over the best known existing approach in terms of number of quantum gates, ancillary inputs and garbage outputs, respectively. Moreover, on average, the proposed design gains an improvement of 5.62% in terms of area and power consumptions over the best known existing approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号