首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
This in vivo double-blind study evaluated the effect of recombinant human glial growth factor 2 (rhGGF2), a Schwann cell mitogen, on the recovery of motor function of rat sciatic nerve following crush injury. Seventy three rats were divided into three groups. Group I (n=5), sham operated; Groups II (n=34) and III (n=34) received a 100 g crush load for 2 h over a 5 mm segment of the sciatic nerve. Group III was treated with 1 mg/kg rhGGF2, via subcutaneous injection one day before nerve crush and daily for the following four days. Group II received an equivalent volume of saline as a control. Motor functional recovery was assessed by calculating the sciatic functional index (SFI) and the recovery rate of tetanic contractile force of the extensor digitorum longus (EDL) muscle. Recovery of nerve function was evident at day 11 after crush in the rhGGF2-treated animals, whereas the nerves in controls were still paralyzed. The rhGGF2-treated animals showed a significant improvement of the SFI between days 11-21 postoperatively when compared to controls. The isometric tetanic contractile force was stronger in the rhGGF2-treated group than in controls, with a significant difference at 40 to 70 Hz stimulus frequencies on day 4. Correlation analysis showed that tetanic contractile force had a linear correlation with the SFI. Histologic assessment indicated that the rhGGF2-treated animals showed less severe degeneration and earlier robust remyelination of axons than controls. The results suggest that treatment with rhGGF2 is effective in promoting nerve regeneration as seen in measurements of functional recovery and qualitative assessment of nerve morphology. The mechanism of GGF's protective effect may be related to its direct action on Schwann cells, stimulating their mitosis as well as inducing neurotrophic factors essential to neuronal maintenance and repair.  相似文献   

3.
The gp130 cytokines leukemia inhibitory factor and interleukin-6 are neuroactive cytokines associated with peripheral nerve injury. Here we show that exogenous administration of these factors selectively regulates neuropeptide phenotype in intact sensory neurons in a manner consistent with their role as injury-induced factors. Intraneural injection of leukemia inhibitory factor into the intact sciatic nerve of adult rats induces a significant increase in the percentage of neuronal profiles immunoreactive for galanin in the L4 and L5 dorsal root ganglia without altering the percentage profiles immunoreactive for vasoactive intestinal polypeptide or neuropeptide Y. Galanin-immunoreactivity was predominantly confined to those neurons which retrogradely transported and accumulated leukemia inhibitory factor. The up-regulation of galanin-immunoreactivity observed in L4 and L5 dorsal root ganglia following unilateral axotomy of the sciatic nerve was significantly reduced following continuous treatment for two weeks with a monoclonal antibody against the gp130 receptor motif. Intraneural injection of interleukin-6 into the intact sciatic nerve also significantly increased the percentage of neuronal profiles which displayed galanin-immunoreactivity but not vasoactive intestinal polypeptide or neuropeptide Y-immunoreactivity. Our results indicate that cytokines which interact with the gp130 receptor at the site of peripheral nerve injury contribute to the cell body response to axotomy. Changes in the levels of such cytokines however are insufficient to account for the complete repertoire of neuropeptide phenotypic changes associated with peripheral nerve injury.  相似文献   

4.
We investigated the retrograde axonal transport of 125I-labeled neurotrophins (NGF, BDNF, NT-3, and NT-4) from the sciatic nerve to dorsal root ganglion (DRG) sensory neurons and spinal motor neurons in normal rats or after neuronal injury. DRG neurons showed increased transport of all neurotrophins following crush injury to the sciatic nerve. This was maximal 1 day after sciatic nerve crush and returned to control levels after 7 days. 125I-BDNF transport from sciatic nerve was elevated with injection either proximal to the lesion or directly into the crush site and after transection of the dorsal roots. All neurotrophin transport was receptor-mediated and consistent with neurotrophin binding to the low-affinity neurotrophin receptor (LNR) or Trk receptors. However, transport of 125I-labeled wheat germ agglutinin also increased 1 day after sciatic nerve crush, showing that increased uptake and transport is a generalized response to injury in DRG sensory neurons. Spinal cord motor neurons also showed increased neurotrophin transport following sciatic nerve injury, although this was maximal after 3 days. The transport of 125I-NGF depended on the expression of LNR by injured motor neurons, as demonstrated by competition experiments with unlabeled neurotrophins. The absence of TrkA in normal motor neurons or after axotomy was confirmed by immunostaining and in situ hybridization. Thus, increased transport of neurotrophic factors after neuronal injury is due to multiple receptor-mediated mechanisms including general increases in axonal transport capacity.  相似文献   

5.
We have investigated the expression of transforming growth factor (TGF)-beta 1,-beta 2, and -beta 3 in developing, degenerating, and regenerating rat peripheral nerve by immunohistochemistry and Northern blot analysis. In normal adult sciatic nerve, TGF-beta 1, -beta 2, and -beta 3 are detected in the cytoplasm of Schwann cells, and the levels of TGF-beta 1 and -beta 3 mRNAs are constant during post-natal development. When sciatic nerves are transected to cause axonal degeneration and prevent axonal regeneration, the level of TGF-beta 1 mRNA in the distal nerve-stump increases markedly and remains elevated, whereas the level of TGF-beta 3 mRNA falls modestly and remains depressed. When sciatic nerves are crushed to cause axonal degeneration and allow axonal regeneration, the level of TGF-beta 1 mRNA initially increases as axons degenerate, and then falls as axons regenerate. TGF-beta 2 mRNA was not detected in developing or lesioned sciatic nerves at any time. Cultured Schwann cells have high levels of TGF-beta 1 mRNA, the amount of which is reduced by forskolin, which mimics the effect of axonal contact. These data demonstrate that Schwann cells express TGF-beta 1, -beta 2, and -beta 3, and that TGF-beta 1 and -beta 3 mRNA predominate over TGF-beta 2 mRNA in peripheral nerve. Axonal contact and forskolin decrease the expression of TGF-beta 1 in Schwann cells.  相似文献   

6.
The effects of U-74006F (tirilazad mesylate), a 21-aminosteroid antioxidant, on injured peripheral nerve were studied. Twenty-two immature and 44 mature rats were divided equally into two groups. The experimental group received two injections of 3 mg/kg of U-74006F at a 2 hour interval. The control group received the same volumes of a citrate buffer. A 5 mm segment of the sciatic nerve was subjected to a crush load of 100 g for 2 hours. Motor function (sciatic functional index) was assessed to day 48 postoperatively. There was total paralysis of the crushed limb in all rats the first week after crushing. The experimental group had a statistically significant improvement in motor function compared with the controls on days 14, 21, 25, and 28 for the mature rats and on days 11 and 14 for the immature rats. The mature controls attained complete recovery on day 42 and had a significantly slower recovery rate than the immature controls, which had recovered fully by day 25. The recovery rates were almost similar among mature and immature groups pretreated with U-74006F, both of which had fully recovered motor function by day 28. The results indicate that pretreatment with U-74006F can significantly promote peripheral nerve function after low-load crush injury and that the age of the animal influences the rate of peripheral nerve recovery.  相似文献   

7.
After peripheral nerve injury, macrophages infiltrate the degenerating nerve and participate in the removal of myelin and axonal debris, in Schwann cell proliferation, and in axonal regeneration. In vitro studies have demonstrated the role serum complement plays in both macrophage invasion and activation during Wallerian degeneration of peripheral nerve. To determine its role in vivo, we depleted serum complement for 1 week in adult Lewis rats, using intravenously administered cobra venom factor. At 1 d after complement depletion the right sciatic nerve was crushed, and the animals were sacrificed 4 and 7 d later. Macrophage identification with ED-1 and CD11a monoclonal antibodies revealed a significant reduction in their recruitment into distal degenerating nerve in complement-depleted animals. Complement depletion also decreased macrophage activation, as indicated by their failure to become large and multivacuolated and their reduced capacity to clear myelin, which was evident at both light and electron microscopic levels. Axonal regeneration was delayed in complement-depleted animals. These findings support a role for serum complement in both the recruitment and activation of macrophages during peripheral nerve degeneration as well as a role for macrophages in promoting axonal regeneration.  相似文献   

8.
N-terminal protein arginylation has been demonstrated in vitro and in situ and has been reported to increase following injury to sciatic nerves of rats. The present study attempts to demonstrate these reactions in vivo by applying [3H]Arg to the cut end of sciatic nerves in anesthetized rats and assaying for N-terminal arginylation using Edman chemistry and acid precipitation of labeled proteins in the proximal nerve segment. No evidence was found for arginylation in an aqueous soluble fraction. However, N-terminal arginylation was detected in a urea soluble fraction at 2 hours after nerve crush. The data show that arginylation of rat sciatic nerve proteins occurs in vivo and suggest that the arginylated proteins formed an aqueous insoluble/urea soluble aggregate after arginylation. In other experiments, rat brains were injured and assayed for arginylation in vitro to test the hypothesis that injury causes an up-regulation of these reactions. Results showed an activation of the reaction at 2 hours post crush and indicate that increases in N-terminal arginylation are likely to be a general response to injury in nervous tissue.  相似文献   

9.
The effect of human mast cells on fibroblast activity was studied using an organotypic skin-equivalent culture system. Human mast cell-1 (HMC-1) cells were embedded in a collagen gel with neonatal dermal fibroblasts at a ratio of 1:4; keratinocytes then were allowed to stratify above this composite culture. Analysis of type a1(I) procollagen mRNA synthesis by in situ hybridization revealed a substantial increase in mRNA levels in the presence of mast cells and especially following degranulation, induced by calcium ionophore A23187. Tryptase, a major product of human mast cells, could substitute for mast cells in this culture system, up-regulating procollagen mRNA synthesis. Tryptase pretreated with the specific protease inhibitor bis(5-amidino-2-benzimidazo-lyl)methane (BABIM) markedly attenuated the collagen mRNA up-regulation. Further studies revealed HMC-1 cell sonicates stimulated fibroblast chemotaxis and procollagen mRNA synthesis. Inhibition of HMC-1 sonicates with either BABIM or a neutralizing mAb against tryptase resulted in significant reduction of fibroblast chemotaxis and procollagen mRNA, implying that tryptase accounted for the majority of HMC-1 sonicate activity. Tryptase directly stimulated fibroblast chemotaxis with optimal concentrations between 10 pM and 1 nM. The maximal response of optimal concentrations of tryptase was comparable with the known fibrogenic factor, TGF-beta. Inhibition of tryptase with BABIM resulted in approximately 50% reduction in chemotactic activity. Additional studies revealed that tryptase (0.3-3 nM) stimulated procollagen mRNA synthesis in confluent monolayers of dermal fibroblasts.  相似文献   

10.
The effect of hyperbaric oxygen (HBO) treatment on regeneration of the rat sciatic nerve was studied. The sciatic nerve was crushed with a pair of pliers and the animals were either left untreated or subjected to a series of 45-min exposures to 100% O2 at 3.3 atm absolute pressure at 0, 4, and 8 h postoperatively and then every 8 h. Regeneration was evaluated using the pinch-reflex test at 3, 4, or 5 days following surgery and with neurofilament staining at 4 days. The regeneration distances at all time points were significantly longer in animals exposed to hyperbaric oxygen treatment independent of the evaluation procedure. A short initial period of the same HBO treatment schedule, with no more treatments after 25 h, appeared as effective as when treatments were maintained being given every 8 h until evaluation. We conclude that HBO treatment stimulates axonal outgrowth following a nerve crush lesion.  相似文献   

11.
The recovery of damaged peripheral nerves has been the subject of multiple studies. The effects of an inadvertent clamping of a nerve has not been well examined. An experiment was performed to evaluate the effects of a minimal-duration crush injury on the rat sciatic nerve and to determine if walking track analysis was useful in evaluating the short-term functional deficit. Ten Sprague-Dawley rats underwent high-pressure, short-duration crush injuries. Walking track analysis was done regularly for 3 weeks. Histological specimens for light and electron microscopy were taken at postoperative days 3, 7, 14, 21, and 42 from similar animals. There was significant decrease in function by the second week, which then improved to control levels after week 3. Toluidine blue and electron microscopic findings confirmed the clinical course, while routine histological findings tended to lag behind the return of function. Walking track analysis appears to be an effective method of evaluating the short-duration nerve crush injury.  相似文献   

12.
In the present study, we evaluated changes in brain-derived neurotrophic factor (BDNF) immunoreactivity in the rat lumbar (L) 5 dorsal root ganglion (DRG) and areas where afferents from the DRG terminate, the L5 spinal cord and gracile nuclei, following unilateral sciatic nerve transection or crush. From 3 days to 4 weeks following cut or crush injury, the percentage of medium and large BDNF-immunoreactive neurons in the ipsilateral DRG increased significantly compared with those on the contralateral side. Following cut injury, there was no significant change in the percentage of small BDNF-immunoreactive neurons in the ipsilateral DRG; however, the intensity of immunoreactivity of these cells decreased. Following crush injury, however, both the percentage and intensity of small BDNF-immunoreactive neurons in the ipsilateral DRG significantly increased. Following cut injury, the expression of BDNF-immunoreactive axonal fibers decreased markedly in the ipsilateral superficial laminae of the L5 spinal cord and increased significantly in the ipsilateral deeper laminae of the spinal cord and gracile nuclei. Crush injury induced a marked increase in the expression of BDNF-immunoreactive axonal fibers in the superficial laminae of the spinal cord and gracile nuclei. These differences in BDNF response in the DRG and spinal cord after cut or crush injuries may reflect differences in trophic support to the injured DRG neurons and altered neuronal activity in the spinal cord and gracile nuclei following different types of peripheral nerve injury.  相似文献   

13.
OBJECTIVE: To determine the ontogeny of functional recovery after peripheral nerve crush injury. DESIGN: Comparative study in rats of varying ages. MATERIAL AND METHODS: Sixty-second crush injury was performed on the left posterior tibial nerve. Control animals underwent either nerve transection or sham procedure. Nerve function was evaluated 2, 4, and 8 weeks following injury by walking track analysis. Print length ratio (PLR), (ratio of normal right-sided print length to experimental left-sided print length), was used to evaluate functional recovery. MEASUREMENTS AND MAIN RESULTS: Two weeks after crush injury, adult rats experienced significantly greater functional impairment than both 4-day-old and 3-week-old animals (p < 0.05). Four weeks after injury, the difference in function between 4-day-old and adult rats and between 3-week-old and adult rats became insignificant. Complete recovery had been achieved by 8 weeks in all groups. CONCLUSIONS: These results demonstrate faster functional recovery after nerve injury in immature rats than in adults.  相似文献   

14.
The functional somatotopic reorganization of the lumbar spinal cord dorsal horn after nerve injury was studied in the rat by mapping the stimulus-evoked distribution of neurons expressing proto-oncogene c-fos. In three different nerve injury paradigms, the saphenous nerve was electrically stimulated at C-fibre strength at survival times ranging from 40 h to more than six months: 1) Saphenous nerve stimulation from three weeks onwards after ipsilateral sciatic nerve transection resulted in an increase in the number of Fos-immunoreactive neurons within the dorsal horn saphenous territory in laminae I-II, and an expansion of the saphenous territory into the denervated sciatic territory until 14 weeks postinjury. 2) Saphenous nerve stimulation from five days onwards after ipsilateral sciatic nerve section combined with saphenous nerve crush resulted in an increase in the number of Fos-immunoreactive neurons within the dorsal horn saphenous nerve territory, and an expansion of the saphenous nerve territory into the denervated sciatic nerve territory. 3) Stimulation of the crushed nerve (without previous adjacent nerve section) at five days, but not at eight months resulted in a temporary increase in the number of Fos-immunoreactive neurons within the territory of the injured nerve, and no change in area at either survival time. The results indicate that nerve injury results in an increased capacity of afferents in an adjacent uninjured, or regenerating nerve, to excite neurons both in its own and in the territory of the permanently injured nerve in the dorsal horn. The onset and duration of the increased postsynaptic excitability and expansion depends on the types of nerve injuries involved. These findings indicate the complexity of the central changes that follows in nerve injuries that contain a mixture of uninjured, regenerating and permanently destroyed afferents.  相似文献   

15.
This study shows that treatment of rats with exogenous glycosaminoglycans stimulates peripheral nerve regeneration, increases the abundance of mRNAs for myelin proteins and promotes muscle reinnervation. After the sciatic nerve had been crushed the number of regenerating axons in the distal stump was markedly and highly significantly increased by glycosaminoglycan treatment throughout the experimental period. The increased number of axons was correlated with increased axon and fibre (axon+myelin) diameter. The abundance of mRNAs for P0 protein and myelin basic protein of regenerating nerves was also affected by treatment with glycosaminoglycans. The increase in mRNA was also observed in the contralateral unlesioned nerve. Such a phenomenon did not occur in saline-treated rats. Glycosaminoglycan treatment markedly increased the number of muscle fibres reinnervated and accelerated the restoration of muscle twitch tension elicited by nerve stimulation. The effect was particularly evident during the early stages (16 and 21 days after nerve crush) of muscle reinnervation.  相似文献   

16.
OBJECTIVE: The purpose of this study was to assess the role of transforming growth factor (TGF)-beta1 in the development of diabetes-associated mesenteric vascular hypertrophy and in the antitrophic effect of angiotensin converting enzyme inhibitors. DESIGN AND METHODS: Streptozotocin-induced diabetic and control Sprague-Dawley rats were randomly allocated to treatment with the angiotensin converting enzyme inhibitor ramipril or to no treatment and were killed 1 or 3 weeks after the streptozotocin injection. Blood was collected and mesenteric vessels removed. Mesenteric vascular weight was measured and TGF-beta1 and alpha1 (type IV) collagen messenger (m)RNA levels were analysed by Northern analysis. Immunohistochemical analyses for TGF-beta1 and type IV collagen were also performed. RESULTS: The diabetic rats had increased mesenteric vessel weight at 3 weeks but not at 1 week and a concomitant rise in mesenteric TGF-beta1 and in alpha1 (type IV) collagen mRNA levels. Ramipril treatment attenuated mesenteric vessel hypertrophy and prevented the increase in TGF-beta1 and alpha1 (type IV) collagen mRNA levels after 3 weeks of diabetes. The immunohistochemical analysis revealed that diabetes was associated with increased TGF-beta1 and type IV collagen protein and extracellular matrix accumulation in mesenteric vessels, and this increase was reduced by ramipril treatment. CONCLUSIONS: These results support the concept that TGF-beta is involved in the changes associated with diabetic vascular disease, and suggest a mechanism by which angiotensin converting enzyme inhibitors exert their antitrophic effects.  相似文献   

17.
To examine whether hepatocytes transplanted in the spleen can function as an ectopic liver, we performed hepatocyte transplantation in rats that were rendered anhepatic. Total hepatectomy was performed by using a novel single-stage technique. Following hepatectomy, Group 1 rats (n = 16) were monitored until death to determine survival time without prior intervention. Group 2 anhepatic rats (n = 20) were sacrificed at various times to measure blood hepatocyte growth factor (HGF) and transforming growth factor beta1 (TGF-beta1) levels. Group 3 (n = 16) rats received intrasplenic injection of isolated hepatocytes (2.5 x 10(7) cells/rat) followed by total hepatectomy after 3 days. Group 4 (n = 12) sham-transplanted rats received intrasplenic saline infusion, and after 3 days they were rendered anhepatic. Group 2, 3, and 4 rats were maintained on daily Cyclosporine A (10 mg/kg; intramuscularly). Group 1 anhepatic rats survived for 22.4 +/- 5.2 hours (standard deviation). The anhepatic state was associated with a progressive and statistically significant rise in blood HGF and TGF-beta1 levels. Rats that received hepatocyte transplantation before total hepatectomy had a significantly longer survival time than sham-transplanted anhepatic controls (34.1 +/- 8.5 vs. 15.5 +/- 4.8 hrs, P < .01). Additionally, at 12 hours post-hepatectomy, transplanted rats had significantly lower blood ammonia, prothrombin time, international normalized ratio, and TGF-beta1 levels when compared with sham-transplanted controls. In conclusion, intrasplenic transplantation of allogeneic hepatocytes prolonged survival, improved blood chemistry, and lowered blood TGF-beta1 levels in rats rendered anhepatic.  相似文献   

18.
To examine the question of whether or not prevention of axonal regrowth after injury affects the molecular responses of neurons to axotomy, Northern blotting and in situ hybridization were used to study changes in the mRNA levels of neurofilament (NF) proteins and tubulins in rat dorsal root ganglion (DRG) cells. Adult male rats sustained either a crush lesion of the mid-sciatic nerve (regeneration-permissive condition) or a cut lesion of the sciatic nerve combined with ligation of the proximal nerve stump and removal of a large segment of the distal nerve (regeneration-prohibitive condition). At 14 days post-injury, the relative levels of the low (NF-L) and middle (NF-M) molecular weight NF protein mRNAs, as well as those of beta II- and beta III-tubulin, were examined in the L4 and L5 DRG. The data showed that the levels of NF-L and NF-M mRNAs decreased while beta II- and beta III-tubulin mRNA levels increased in the DRG after either crush axotomy or cut/ligation axotomy of the sciatic nerve, suggesting that the elicitation of these molecular changes by axon disconnection is independent of the ultimate success or failure of the axonal regrowth process. However, cut/ligation axotomy had a more pronounced effect than did crush injury on the mRNA changes. This result suggests that feedback mechanisms from regrowing axons are important in regulating the extent of the cytoskeletal mRNA changes in injured neurons.  相似文献   

19.
Tibialis anterior and extensor digitorum longus muscles were partially denervated by cutting the L4 spinal nerve in three-day-old rats. The ultrastructure of the intact axons to these muscles in the L5 spinal nerve was examined in nine-day-old rats. In the control L5 spinal nerve, myelinated and unmyelinated axons were intermingled throughout the cross-section of the nerve, while on the operated side the nerve contained areas with predominantly small unmyelinated immature axons. The number of motoneurons innervating the partially denervated muscles was established by retrograde labelling with Diamidino Yellow. In nine- and 21-day-old rats, the number of labelled motoneurons on the partially denervated side, expressed as a percentage of the control side, was 26.1 +/- 5.5% and 20.7 +/- 3.0%, respectively. The response of these uninjured motoneurons to axotomy was tested. The axons of the motoneurons to the partially denervated muscles were crushed at nine days and the numbers of labelled motoneurons in the spinal cord of these rats counted at 21 days of age. Only 4.9 +/- 2.0% labelled motoneurons were seen on the operated side, as opposed to 20.7 +/- 3.0% present in animals without sciatic nerve injury. In normal animals, nerve injury at nine days does not cause motoneuron death. Thus, motoneurons to partially denervated muscles (i) have axons with several immature features and (ii) remain susceptible to axotomy-induced death for much longer than normal.  相似文献   

20.
Quantitative receptor binding autoradiography was used to study the NK1, NMDA, 5HT1a, and 5HT2 receptor binding densities in the adult rat lumbar spinal cord from 3 days to 20 weeks following a unilateral crush lesion of the sciatic nerve. NK1 binding density increased unilaterally in the superficial dorsal horn on the side of the sciatic crush to reach levels 60% above controls by 4 weeks following the lesion and returned to control values by 12 weeks. NMDA binding density increased bilaterally and equally in both the dorsal and ventral horns to reach 300% of control values at 2 weeks following the crush and returned to near control values by 20 weeks following the lesion. Serotonergic receptor binding did not change. The changes in NK1 receptor binding density on postsynaptic dorsal horn cells are consistent with a response to the decrease and recovery in the synthesis and transport of tachykinins by the dorsal root ganglion cells following peripheral nerve injury. the bilateral changes in NMDA receptor binding are more likely mediated by polysynaptic pathways in the spinal cord that respond to the changes in metabolic events of the dorsal root ganglion cells evoked by axotomy and regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号