共查询到17条相似文献,搜索用时 109 毫秒
1.
2.
3.
车型识别在高速公路收费、停车收费、城市道路监控等诸多领域有着广泛的应用。针对传统车型识别系统存在的识别效率低、结构复杂、安装难度大等问题,提出并实现了一种基于超声波测距及BP神经网络的车型识别系统。该系统以嵌入式微处理器、485总线为核心,运用超声波测臣实现对车辆外形尺寸的检测,并从中提取表征车型的四个参数,通过BP神经网络对所获取的参数进行自动分类识别。实验结果表明,该方法车型识别的正确率在95%以上。 相似文献
4.
5.
基于BP神经网络的超声测距误差补偿 总被引:1,自引:0,他引:1
指出了超声波在测距应用中的局限性,并给出解决方案。着重从新的角度补偿超声传感器的误差,提出了用BP前馈神经网络补偿超声波声速受温度、湿度变化而引起的误差。在室外工作的测距仪上,应用该补偿方法后超声测距的精度提高了2个数量级。本方案适用于高精度要求或复杂环境下超声测距。 相似文献
6.
7.
分析了超声测距原理及其存在误差的原因,提出了一种采用BP神经网络的超声测距误差补偿算法。该算法可对给定的输入向量和目标向量进行样本训练,在训练过程中不断调整权值、阈值,最终达到一定的映射关系以修正误差。仿真结果验证了该算法的有效性。 相似文献
8.
9.
10.
11.
12.
13.
14.
Jun Li Karim Ouazzane Hassan Kazemian Yanguo Jing Richard Boyd 《Neural computing & applications》2011,20(6):889-896
Multiple algorithms have been developed to correct user??s typing mistakes. However, an optimal solution is hardly identified among them. Moreover, these solutions rarely produce a single answer or share common results, and the answers may change with time and context. These motivated this research to synthesize some distinct word correction algorithms to produce an optimal prediction based on database updates and neural network learning. In this paper, three distinct typing correction algorithms are integrated as a pilot research with key factors such as Time Change, Context Change and User Feedback being considered. Experimental results show that the developed WLR model (i.e., word-list neural network ranking model) achieves the best results in comparison with Levenshtein distance, Metaphone. and Two-Gram prediction algorithms throughout all stages. It achieves 57.50% Ranking First Hitting Rate with samples of category one and a best Ranking First Hitting Rate of 74.69% within category four. Further work is recommended to extend the number of parameters and integrate more algorithms to achieve a higher level of accuracy. 相似文献
15.
16.
通过对载体催化瓦斯传感器检测原理的分析,指出瓦斯体积分数与瓦斯传感器输出电压之间呈非线性关系,提出了应用函数型连接神经网络的强非线性逼近能力,且不依赖确定的数学模型的优点,建立非线性校正模型,消除瓦斯检测中的非线性误差.网络仿真结果与分段线性拟合曲线的比较表明:这种非线性校正模型结构简单、收敛速度快、逼近精度高. 相似文献