首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
以乙二胺(ED)为改性剂对MIL-101(Cr)-NDC进行表面改性,以改变材料的亲油疏水性能。经XRD、FT-IR、N2吸附和脱附等表征表明,ED分子成功连接入材料中。采用C_5~C_7正构烷烃模拟油气组份测定材料的油气吸附性能,并考察了相对湿度对改性前后材料油气吸附性能的影响。结果表明,25℃下,C_5~C_7正构烷烃和水蒸气在ED-MIL-101(Cr)-NDC上静态吸附量分别为0.558、0.695、0.613 g/g和0.254 g/g,与改性前材料相比,ED-MIL-101(Cr)-NDC的C_5~C_7正构烷烃静态吸附量较高,水蒸气静态吸附量较低;ED-MIL-101(Cr)-NDC在97%相对湿度下的C_5~C_7正构烷动态吸附量为0%相对湿度下C_5~C_7正构烷动态吸附量的65%左右。改性后材料的油气静态吸附性能提升明显,且水蒸气对ED-MIL-101(Cr)-NDC油气吸附影响较小。  相似文献   

2.
乙醇在MIL-101上的吸附相平衡及其吸附机理   总被引:1,自引:1,他引:0       下载免费PDF全文
余颖  孙雪娇  颜健  肖静  奚红霞  李忠 《化工学报》2016,67(1):300-308
主要研究了MIL-101材料对乙醇的吸附性能和吸附机理。采用水热合成法制备了MIL-101(Cr),并分别应用N2静态吸附、X射线粉末衍射(PXRD)、傅里叶红外光谱(FTIR)等分析手段对MIL-101晶形结构、孔隙结构参数进行分析表征。应用静态吸附法测定乙醇和水蒸气在不同温度下的吸附等温线,并讨论乙醇吸附在MIL-101(Cr) 4种吸附位的机理,根据吸附等温线估算出乙醇和水蒸气在MIL-101上的等量吸附热,并测试了乙醇在MIL-101上的吸附循环性能。研究表明,在298 K下,MIL-101的乙醇吸附容量为20.3 mmol·g-1,远高于传统吸附材料。在低压下MIL-101对乙醇的吸附量高于水蒸气的吸附量,这是由于乙醇的偶极矩和分子动力学直径均比水大,使得乙醇分子在孔道中受到更大吸附力场作用;在低吸附量范围,乙醇在MIL-101上的等量吸附热要高于水蒸气的等量吸附热。在较高吸附压力条件下,主要发生多层吸附或孔填充,受吸附剂的孔容限制效应,尺寸越大的分子被吸附的物质的量会越少,由于乙醇的动力学直径(0.45 nm)大于水分子的动力学直径(0.268 nm),所以在较高吸附压力下乙醇在MIL-101上吸附量要小于水蒸气的吸附量。多次吸附脱附等温线测试显示MIL-101具有良好的乙醇吸附循环性能。  相似文献   

3.
采用水热合成法制备水热稳定金属有机骨架MIL-101(Cr),基于太阳能吸附式空气取水选取不同的实验工况,将MIL-101(Cr)、细孔硅胶作为研究对象,相对湿度控制在50%、温度范围5~45℃条件下,测试并对比了MIL-101(Cr)与细孔硅胶的吸附性能。实验表明,35℃、50%RH条件下,吸附过程进行1000min,MIL-101(Cr)水吸附量为22.05g/100g,其吸附量相比细孔硅胶提高93%左右;当系统平衡时,MIL-101(Cr)有效平均吸附速率相比细孔硅胶提高120%左右。此外,在相对湿度(RH)50%、温度范围5~45℃条件下,MIL-101(Cr)的平衡吸附量在11.40~23.47g/100g之间。在所控温度下,MIL-101(Cr)在25℃时平衡吸附量最大,在5℃时平衡吸附量最小,25℃时MIL-101(Cr)的平衡吸附量相比5℃时提高106%左右。该实验可以为四季工况不同温度下MIL-101(Cr)用于太阳能吸附式空气取水提供基础数据。  相似文献   

4.
在多种条件下研究了金属有机框架MIL-101(Cr)对阳离子型染料(亚甲基蓝、罗丹明B)和阴离子型染料(甲基橙、酸性铬蓝K)的吸附性质,主要研究了MIL-101(Cr)对亚甲基蓝和甲基橙的选择性吸附作用。结果表明,中性环境下无论在单组分还是双组分体系中MIL-101(Cr)对阴离子型染料的吸附能力均大于对阳离子型的吸附能力。在pH=3,T=300 K的条件下,选择性系数β可达5.9,但随着pH的增加,选择性系数逐渐降低。相比之下,温度对吸附的选择性影响不大。选择性吸附的机理可以解释为:由于表面带正电荷,MIL-101(Cr)对阴离子型染料产生静电吸引作用;相反,对阳离子型染料的排斥作用而降低了其吸附能力。另外,乙二胺改性提高了MIL-101(Cr)对阴离子型染料的选择吸附性能,而草酸改性降低了选择吸附性。  相似文献   

5.
采用溶剂热法将乙二胺接枝到金属有机骨架材料MIL-101(Cr)上,用于常压下CO2的吸附,研究了乙二胺接枝量及温度对材料结构、形貌和CO2吸附性能的影响. 结果表明,乙二胺改性的MIL-101材料在常温常压下对CO2的吸附量可达2.43 mmol/g,比改性前提高14.6%,CO2/N2的吸附分离系数从11提高至17,比改性前提高55.6%. 改性后材料经80℃真空加热可完全脱附再生,具有很好的再生稳定性.  相似文献   

6.
采用溶剂热法将乙二胺接枝到金属有机骨架材料MIL-101(Cr)上,用于常压下CO_2的吸附,研究了乙二胺接枝量及温度对材料结构、形貌和CO_2吸附性能的影响.结果表明,乙二胺改性的MIL-101材料在常温常压下对CO_2的吸附量可达2.43 mmol/g,比改性前提高14.6%,CO_2/N_2的吸附分离系数从11提高至17,比改性前提高55.6%.改性后材料经80℃真空加热可完全脱附再生,具有很好的再生稳定性.  相似文献   

7.
采用水热合成法制备金属有机骨架材料MIL-101(Cr),以MIL-101(Cr)为催化剂催化PMS产生SO~-_4·降解RhB。采用SEM、EDS及XRD对制备的MIL-101(Cr)进行表征,表征结果证明成功合成了MIL-101(Cr);对照试验证明MIL-101(Cr)具有催化活性;反应条件试验说明MIL-101(Cr)催化性能受催化剂投加量、氧化剂投加量和pH的影响;循环使用试验证明MIL-101(Cr)具有一定的循环使用性。当MIL-101(Cr)投加量为0.6 g/L、PMS投加量为0.5 g/L、pH值为6.5时,RhB的降解率可达93.3%。  相似文献   

8.
采取水热法成功合成MIL-53(Cr)晶体,分别应用0.1、1、3 mol·L?1的氨气对MIL-53(Cr)进行改性,制得系列的NH3@MIL-53(Cr)-1#,NH3@MIL-53(Cr)-2#,NH3@MIL-53(Cr)-3#。实验结果表明:与原始的MIL-53(Cr)晶体相比,尽管制得NH3@MIL-53(Cr)系列材料的比表面积依次减少,但其单位比表面积的CO2吸附容量大小依次为:NH3@MIL-53(Cr)-3#NH3@MIL-53(Cr)-2#NH3@MIL-53(Cr)-1#。表明氨气改性会使得材料表面的碱性增强,从而增强了其对酸性气体CO2的吸附。此外,改性后的NH3@MIL-53(Cr)对水蒸气的吸附量明显减少,表明其憎水性能得到改善。较高浓度氨气改性会导致材料的比表面积大幅下降,会引起单位质量吸附剂的吸附容量下降。用1 mol·L?1浓度的氨气改性得到的NH3@MIL-53(Cr)-2#,不仅对CO2的吸附容量最大,而且对CH4的吸附容量明显下降,这将有助于进一步提高改性材料NH3@MIL-53(Cr)-2#对CO2/CH4的吸附选择性。  相似文献   

9.
选择Cr(NO_3)_3·9H_2O与对苯二甲酸为原料,通过溶剂热处理方法制备得到MIL-101(Cr)及MIL-101(Cr)-125Ti,利用SEM、TEM、XRD等对其形貌和结构进行表征,对比了不同吸附剂添加量、溶液p H及温度参数引起的MIL-101(Cr)-125Ti吸附能力变化。结果表明,相对于MIL-101(Cr),MIL-101(Cr)-125Ti粒径尺寸显著增大,可以获得对BPA的更强吸附能力;MIL-101(Cr)-125Ti中同时形成了结晶相与非晶相两种组织形态; MIL-101(Cr)-125Ti大部分孔径接近6.1 nm,说明MIL-101(Cr)-125Ti属于一种介孔结构; MIL-101(Cr)的比表面积更小,形成了更大的孔径。经过对BPA去除率的影响试验结果确定了最优的参数:吸附剂质量浓度为0.75 mg/m L、溶液p H为5、溶液温度为35℃。  相似文献   

10.
以氢氟酸为矿化剂制备金属有机骨架MIL-101(Cr)存在过程繁复、危险系数高的问题。文中改用乙酸为矿化剂,使用X射线衍射、热重分析、扫描电镜、氮气吸附-脱附等表征手段研究了材料的物理结构和形态,并采用固定床评价装置测试比较了样品对CO_2的吸附能力。结果表明:当以1.66 g对苯二甲酸和4 g九水硝酸铬为原料并加入18 mL乙酸时制备的MIL-101(Cr)在25℃,0.1 MPa对CO_2的饱和吸附量达到了130.36 mg/g,是传统制备方法的2.5倍,该结果说明采用适量乙酸为矿化剂同样可以制备出对CO_2吸附性能较好的MIL-101(Cr);并在低于1 MPa的不同吸附压力下,随着吸附压力的升高,MIL-101(Cr)和MIL-101(Cr)-A-18的2种材料对CO_2的吸附饱和时间逐渐延长,饱和吸附量增加,说明了高压有利于2种材料对CO_2的吸附。  相似文献   

11.
利用银、铈双金属改性金属有机骨架MIL-101制备Ag-Ce/MIL-101吸附剂,并对Ag-Ce/MIL-101进行XRD、SEM、BET和ICP表征。考察了制备条件对Ag-Ce/MIL-101吸附苯并噻吩(BT)性能的影响。结果表明,Ag-Ce/MIL-101未破坏MIL-101的原始晶格结构,比表面积和孔容有所降低。适宜Ag-Ce/MIL-101的制备条件为:负载顺序为先银后铈,金属负载浓度均为40 mmol/L,金属溶液用量均为2 mL,负载温度为150℃,负载时间为9 h。在吸附剂质量为0.1 g、模拟油用量为20 mL、吸附温度为30℃、吸附时间为12 h时,Ag-Ce/MIL-101对BT的吸附量达到33.9 mg/g。  相似文献   

12.
采用水热方法制备得到MIL-101(Cr),经过磺化处理生成含磺酸基的MIL-101(Cr)-SO_3H,再将其掺入酚酞侧基聚芳醚砜(PES-C)内,获得PES-C/MIL-101(Cr)-SO_3H质子交换膜,测试了PES-C膜的显微组织形态、吸水率及其对质子的传导能力。结果表明,MIL-101(Cr)-SO_3H形成了和MIL-101(Cr)相同的特征峰,在磺化反应阶段试样依然保持了完整的晶体结构。制得了具有致密组织的PES-C膜,并且其表面达到了较光滑的状态,添加MIL-101(Cr)-SO_3H后的PES-C膜则形成了粗糙表面组织。且随着MIL-101(Cr)-SO_3H含量的增加,PES-C膜表面形成了更多MIL-101(Cr)-SO_3H颗粒,粗糙程度越发的明显。随着去离子水温度的增加,PES-C膜的吸水率和溶胀度增加,获得了更强传导质子的能力。未添加MIL-101(Cr)-SO_3H的PES-C膜达到了最小吸水率,提高MIL-101(Cr)-SO_3H填充量后,PES-C膜吸水率持续增大,表现出更强的质子传导能力。  相似文献   

13.
聚乙烯醇改性无纺布的制备及耐污染性能的研究   总被引:1,自引:1,他引:0  
采用表面涂覆法,将聚乙烯醇(PVA)薄膜固定在聚丙烯无纺布表面,进行表面亲水改性.通过测定未改性及改性无纺布表面的静态水接触角,评价改性无纺布表面的亲水性;通过测定未改性及改性无纺布牛血清蛋白(BSA)静态吸附量、在膜生物反应器中未改性及改性无纺布表面附着污泥的固定性胞外聚合物(EPSB)和溶解性胞外聚合物(EPSS)动态吸附量和组分(蛋白质/多糖,P/C)以及膜通量,评价改性无纺布的耐污染性能.结果表明,无纺布表面复合PVA薄膜,明显提高了无纺布表面的亲水性,水静态接触角从改性前的86°±1°降至改性后的43°±3°;牛血清蛋白(BSA)静态吸附量降低了83.4%;未改性与改性无纺布的EPSB吸附量相差很小,而EPSS吸附量相差很大;未改性无纺布EPSB和EPSS的P/C均大于改性无纺布;另外,在膜生物反应器运行期间,未改性及改性无纺布的膜通量分别衰减了40%和12%.说明通过复合PVA薄膜,提高无纺布表面的亲水性,能有效抑制蛋白质的吸附和通量的降低,增加无纺布的耐污染性能.  相似文献   

14.
以UiO-66(Zr)、MIL-100(Fe)、MIL-100(Cr)、MIL-101(Cr)、NH 2-MIL-101(Al)为载体,Au为活性组分,制备Au/UiO-66(Zr)、Au/MIL-100(Fe)、Au/MIL-100(Cr)、Au/MIL-101(Cr)、Au/NH 2-MIL-101(Al)双功能催化剂。采用XRD、BET、NH 3-TPD、HRTEM等表征催化剂的结构,在釜式反应器中评价催化剂对CO 2与苯胺/H 2反应生成N-甲基苯胺与N,N-二甲基苯胺的N-甲基化反应性能,考察反应条件对催化剂催化性能的影响。结果表明,催化剂的XRD特征衍射峰与相应MOFs的模拟特征峰基本一致;负载Au后催化剂仍具有高的比表面积和大的孔容、孔径;不同MOFs负载Au的催化剂具有不同的酸强度和酸量;Au纳米粒子的分散性很好,粒径为(3~7)nm。制备的催化剂均具有催化CO2与苯胺/H2的N-甲基化反应性能,其中质量分数2%Au/MIL-101(Cr)催化剂催化性能最好,苯胺转化率为45.26%,N-甲基苯胺和N,N-二甲基苯胺选择性分别为73.50%和26.50%,重复使用性能优异。  相似文献   

15.
采用溶剂热法在纳米SiO_2@Fe_3O_4磁性颗粒表面原位合成MIL-101(Cr),制备磁性MIL-101(Cr)@SiO_2@Fe_3O_4催化剂。采用甲胺、乙二胺和丁二胺对制备的磁性催化剂进行功能化,得到胺功能化NH2-MIL-101(Cr)@SiO_2@Fe_3O_4催化剂。利用XRD、FT-IR、BET、SEM、TEM和VSM等对催化剂结构进行表征,评价胺功能化NH2-MIL-101(Cr)@SiO_2@Fe_3O_4催化剂对糠醛和氰乙酸乙酯Knoevenagel缩合反应性能和重复使用性能,考察反应条件与催化性能的关系。结果表明,制备的新型胺功能化NH2-MIL-101(Cr)@SiO_2@Fe_3O_4催化剂具有MIL-101(Cr)的结构特征和良好的超顺磁性能,对糠醛和氰乙酸乙酯Knoevenagel缩合反应表现出很好的催化性能,其中,乙二胺功能化30%MIL-101(Cr)@SiO_2@Fe_3O_4催化剂对Knoevenagel缩合反应的性能最佳,在反应温度40℃和反应时间1 h条件下,氰乙酸乙酯转化率为97. 0%,产物选择性接近100%。反应后磁性催化剂可以通过外磁场容易进行分离,重复使用5次,氰乙酸乙酯转化率仍大于93%。  相似文献   

16.
以壳聚糖为生物质碳源,通过一步水热碳化法对凹凸棒石进行亲有机改性,对改性凹凸棒石进行表征,研究了其对Cr(Ⅵ)的静态和动态吸附性能,对其除Cr(Ⅵ)机制进行了初步探讨.结果表明,改性凹凸棒石表面有丰富的羟基、氨基和羧基等有机官能团,壳聚糖碳化产物成功负载于凹凸棒石表面.在实验的pH值范围内,总铬去除率随pH值增加先增大后减小,pH为1和2时总铬去除率分别为11.7%和80.8%,pH为3时总铬去除率降至10.2%.总铬吸附量随Na~+浓度增加而降低.对总铬的吸附等温线符合Langmuir模型,最大吸附量高达204.1 mg/g.改性凹凸棒石对总铬的动态吸附主要受颗粒内扩散控制,在强酸性条件下(pH=2),去除Cr(Ⅵ)是吸附-还原-再吸附的耦合过程.  相似文献   

17.
活性炭的吸附性能与其表面化学密切相关,本研究为讨论活性炭表面氧化改性对其Cr(Ⅵ)吸附特性的影响,分析了Cr(Ⅵ)吸附过程与活性炭表面化学性质的关系,阐释吸附机理。结果表明,与未改性活性炭相比,硝酸氧化改性后活性炭对溶液中Cr(Ⅵ)的吸附性能提高,且改性后活性炭的比表面积和孔容积降低,表面的羧基、内酯基和酚羟基等酸性含氧官能团的数量增多。改性活性炭对Cr(Ⅵ)的吸附过程可用Langmuir、Freundlich、D-R和Temkin4种吸附模型模拟,吸附动力学数据与拟二级动力学模型吻合。采用X射线光电子能谱(XPS)表征了改性前后活性炭的表面化学性质。Cr(Ⅵ)在活性炭上的吸附机理主要为静电吸引、还原和配位络合等,与Cr(Ⅵ)发生络合作用的是活性炭表面含氧官能团。  相似文献   

18.
杨琰  王莎  张志娟  夏启斌  李忠 《化工学报》2014,65(5):1759-1763
采取水热法成功合成MIL-53(Cr)晶体,分别应用0.1、1、3 mol·L-1的氨气对MIL-53(Cr)进行改性,制得系列的NH3@MIL-53(Cr)-1#,NH3@MIL-53(Cr)-2#,NH3@MIL-53(Cr)-3#。实验结果表明:与原始的MIL-53(Cr)晶体相比,尽管制得NH3@MIL-53(Cr)系列材料的比表面积依次减少,但其单位比表面积的CO2吸附容量大小依次为:NH3@MIL-53(Cr)-3#>NH3@MIL-53(Cr)-2#>NH3@MIL-53(Cr)-1#。表明氨气改性会使得材料表面的碱性增强,从而增强了其对酸性气体CO2的吸附。此外,改性后的NH3@MIL-53(Cr)对水蒸气的吸附量明显减少,表明其憎水性能得到改善。较高浓度氨气改性会导致材料的比表面积大幅下降,会引起单位质量吸附剂的吸附容量下降。用1 mol·L-1浓度的氨气改性得到的NH3@MIL-53(Cr)-2#,不仅对CO2的吸附容量最大,而且对CH4的吸附容量明显下降,这将有助于进一步提高改性材料NH3@MIL-53(Cr)-2# 对CO2/CH4的吸附选择性。  相似文献   

19.
采用浸渍法将甲酸铜与氯化铜前驱体负载到金属有机骨架材料MIL-101载体上,通过改变活化温度和铜盐负载量,制备Cu/MIL-101吸附剂。用XRD、FT-IR、TG、N_2吸附和脱附等表征手段考察材料的结构和性能,测试Cu/MIL-101吸附剂在101.3k Pa、25℃的CO、N_2吸附量。结果表明,制备该吸附剂的最佳活化温度为220℃,最佳铜盐负载量为4mmol·(gMIL-101)~(-1)。铜基改性后的吸附剂CO的吸附量由23.93cm~3·g~(-1)提高到53.55cm~3·g~(-1),N_2的吸附量由5.81cm~3·g~(-1)下降到3.29cm~3·g~(-1),用理想吸附溶液理论IAST模型预测CO/N_2吸附选择性由26提高到2194。吸附剂可在200℃、真空下再生。  相似文献   

20.
采用碱辅助的原位水热合成法制备了纳米金属有机骨架材料MIL-101(Cr)NH2,研究了合成液中NaOH加入量对其晶体结构、形貌和孔结构的影响,测定了273.4,298和333K下CO2和N2在MIL-101(Cr)NH2上的等温吸附曲线,并对其性质进行了表征.结果表明,加入适量碱(NaOH:NH2BDC=4:2,摩尔比)可得到粒径约40nm的MIL-101(Cr)NH2纳米颗粒,其BET比表面积可达2594m2/g,孔容为2.11cm3/g,273.4K时CO2的吸附量可达25.9mmol/g,CO2与N2的理想分离系数为19.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号