首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
深度学习在图像、语音、文本等多种模态的数据任务上取得了优异的效果.然而,针对特定任务,人工设计网络需要花费大量的时间,并且需要设计者具有一定水平的专业知识和设计经验.面对如今日趋复杂的网络架构,仅依靠人工进行设计变得越来越复杂.基于此,借助算法自动地对神经网络进行架构的搜索成为了研究热点.神经架构搜索的方法涉及3个方面:搜索空间、搜索策略、性能评估策略.通过搜索策略在搜索空间中选择一个网络架构,借助性能评估策略对该网络架构进行评估,并将结果反馈给搜索策略指导搜索策略选择更好的网络架构,通过不断迭代得到最优的网络架构.为了更好地为读者提供一个快速了解神经网络架构搜索方法的导航地图,从搜索空间、搜索策略和性能评估策略3个方面对现有典型的神经架构搜索方法进行了梳理,总结讨论了近年来常见的架构搜索方法,并分析了各种方法的优势和不足.  相似文献   

3.
可微分架构搜索(DARTS)可高效、自动地设计神经网络架构,但其超网络的构建方式与派生策略的设计之间存在性能"鸿沟".针对上述问题,提出了优化搜索空间下带约束的可微分神经网络架构搜索算法.首先,以候选操作关联的架构参数为量化指标来分析超网络的训练过程,发现在派生架构中未生效的候选操作none占据了权重最大的架构参数,从...  相似文献   

4.
在自然场景文字检测和识别任务中,现有大多数方法的文字检测和文字识别过程相对独立,导致这些方法处理速度较慢;此外,这些方法的训练和推理过程较为复杂,并且手工设计合理的架构比较困难。针对以上这些问题,基于可微分架构搜索方法提出了多分支自动选择网络(MBASNet),该网络由数个多分支自动选择块(MBASB)组成。MBASB能在不显著增加计算量的情况下通过自动搜索检测和识别性能较优的子分支结构,组合多个MBASB得到整个检测和识别网络。所提出的MBASNet可以同时训练检测子网络和识别子网络,降低文字检测和识别任务中网络的训练和推理难度,提高对文字的检测和识别速度。MBASNet在ICDAR2013数据集上取得了89.4%的精确率和91.4%的召回率,在ICDAR15数据集上取得了80.5%的精确率和86.8%的召回率,并且计算速度达到了每秒68帧。  相似文献   

5.
6.
针对可微架构搜索方法存在的离散化误差、更新不平衡、跳跃连接富集等问题,提出一种基于资源平衡的网络架构搜索方法.首先,通过资源平衡型渐进式剪枝法裁剪对性能提升贡献较小的弱操作;其次,为使架构搜索过程中各操作具有单独的权重,能够体现出每个操作对超网性能的贡献,将架构搜索过程中各操作算子之间的竞争关系改为先合作、后竞争的关系;最后,对候选操作添加高斯噪声以抑制跳跃连接的不公平竞争优势.在三维点云数据集ModelNet和二维图像数据集CIFAR-10进行了实验,结果表明所提方法能有效地减小离散化误差,防止跳跃连接富集导致的性能坍塌;与SGAS,NoisyDARTS和人工设计的网络架构相比,所提方法能高效地搜索出帕累托最优网络架构,在三维点云模型分类过程中具有较高的分类准确率.  相似文献   

7.
为了解决基于传感器数据的运动识别问题,利用深度卷积神经网络(CNN)在公开的OPPORTUNITY传感器数据集上进行运动识别,提出了一种改进的渐进式神经网络架构搜索(PNAS)算法。首先,神经网络模型设计过程中不再依赖于合适拓扑结构的手动选择,而是通过PNAS算法来设计最优拓扑结构以最大化F1分数;其次,使用基于序列模型的优化(SMBO)策略,在该策略中将按照复杂度从低到高的顺序搜索结构空间,同时学习一个代理函数以引导对结构空间的搜索;最后,将搜索过程中表现最好的20个模型在OPPORTUNIT数据集上进行完全训练,并从中选出表现最好的模型作为搜索到的最优架构。通过这种方式搜索到的最优架构在OPPORTUNITY数据集上的F1分数达到了93.08%,与进化算法搜索到的最优架构及DeepConvLSTM相比分别提升了1.34%和1.73%,证明该方法能够改进以前手工设计的模型结构,且是可行有效的。  相似文献   

8.
谢新林  肖毅  续欣莹 《计算机应用》2022,42(5):1424-1430
肺结节分类是早期肺癌诊断的重要任务。基于深度学习的肺结节分类方法虽然能够取得良好的分类精度,但存在模型复杂和可解释性差的问题。为此,提出了一种基于神经网络架构搜索的肺结节分类算法。首先,将注意力残差卷积cell作为搜索空间的基本单元,并使用偏序剪枝方法作为搜索策略来构建神经网络架构以搜索3D分类网络,从而达到网络性能和搜索速度的平衡。其次,在网络中构建了多尺度通道和空间注意力模块来提高特征描述和类别推理的可解释性。最后,采用堆叠法将搜索到的网络架构进行多模型的融合,从而获取精准的肺结节良恶性分类预测结果。实验结果表明,在肺结节分类常用数据集LIDC-IDRI上,所提算法与最新肺结节分类算法相比具有较好的分类性能和较快的收敛,且所提算法的特异性和精确率分别达到95.37%和93.42%,能够实现良恶性肺结节的准确分类。  相似文献   

9.
特征融合网络通过融合多尺度特征来提高目标检测精度,是深度学习目标检测框架中的关键部分.已有的研究工作通过优化融合网络的拓扑结构来提高结果精度,忽略了所需的硬件资源开销以及特征选择和特征融合操作对结果的影响.本文提出了支持多尺度特征融合的注意力感知融合网络(Attention-aware Fusion Network,AFN),通过软硬件协同可实现硬件开销(参数存储、计算时间等)敏感的神经网络自动搜索,从融合网络的特征、路径和操作三方面实现一体化的优化部署.实验结果表明,当主干网络为ResNet50时,在实现相似检测精度时,相比现有最先进的搜索网络NAS-FPN,本文方法的参数量和计算量分别减少29.6%和22.3%,相比现有人工设计网络FPN,本文方法的AP可以提高2.1%.当主干网络为VGG时,相比现有最先进的搜索网络Auto-FPN,本文方法的AP提高了1.7%.  相似文献   

10.
神经网络架构搜索主要解决人工设计神经网络难度大的问题,针对该算法的研究在自动化机器学习领域有着深远的意义.搜索算法的主要流程包括设计搜索空间、设计搜索策略、网络评估,针对搜索空间,应用通道随机重排技术和上下文信息融合技术进行高效特征提取,同时在搜索策略上,针对联合搜索优化困难且消耗时间长的问题,设计了修正网络的redu...  相似文献   

11.
缪斯  祝永新 《计算机工程》2021,47(9):313-320
为了解决设计图像去模糊神经网络依赖大量手工调参的问题,提出一种面向图像盲去模糊的可微分神经网络架构搜索方法。通过设计U型残差搜索空间,将去模糊网络的搜索过程分为9个搜索单元的搜索过程,降低了搜索的复杂度,并设计出一个基于随机游走和最近邻插值的算法,通过模拟相机运动轨迹的方式生成模糊核,进而生成足够的模糊图像用于训练。实验结果表明,该方法明显减少了人工调参的工作量,在GOPRO和Kohler数据集上搜索得到的网络,峰值信噪比相对于基准网络UNet分别提升3.10 dB和1.17 dB,并接近UNet的推理速度。  相似文献   

12.
近年来,深度神经网络(DNNs)在许多人工智能任务中取得卓越表现,例如计算机视觉(CV)、自然语言处理(NLP).然而,网络设计严重依赖专家知识,这是一个耗时且易出错的工作.于是,作为自动化机器学习(AutoML)的重要子领域之一,神经结构搜索(NAS)受到越来越多的关注,旨在以自动化的方式设计表现优异的深度神经网络模...  相似文献   

13.
神经网络结构搜索(neural architecture search,NAS)是自动化机器学习的重要组成部分,已被广泛应用于多个领域,包括计算机视觉、语音识别等,能够针对特定数据、场景、任务寻找最优的深层神经网络结构.将NAS引入至脑数据分析领域,能够在图像分割、特征提取、辅助诊断等多个应用领域大幅度提升性能,展现低能耗自动化机器学习的优势.基于NAS进行脑数据分析是当前的研究热点之一,同时也具有一定挑战.目前,在此领域,国内外可供参考的综述性文献较少.对近年来国内外相关文献进行了细致地调研分析,从算法模型、研究任务、实验数据等不同方面对NAS在脑数据分析领域的研究现状进行了综述.同时,也对能够支撑NAS训练的脑数据集进行了系统性总结,并对NAS在脑数据分析中存在的挑战和未来的研究方向进行了分析和展望.  相似文献   

14.
现有的性能优异的医学图像分割模型大都由领域专家手动设计,设计过程往往需要大量专业知识和反复实验。此外,过度复杂的分割模型不仅对硬件资源有较高要求,且分割效率较低。为此,提出了用于自动构建轻量化医学图像分割网络的神经结构搜索方法Auto-LW-MISN(Automatically Light-Weight Medical Image Segmentation Network)。通过构建轻量级搜索空间、设计适用于医学图像分割的搜索超网络、设计添加复杂性约束的可微分搜索策略,建立用于自动搜索轻量化医学图像分割网络的神经结构搜索框架。在显微镜细胞图像、肝脏CT图像和前列腺MR图像等数据集上进行实验,结果表明,Auto-LW-MISN能够针对不同模态的医学图像自动构建轻量化的分割模型,其分割精度相比U-net, Attention U-net, Unet++和NAS-Unet等方法均有提高。  相似文献   

15.
为了提高构建深度卷积神经网络(CNN)的自动化程度并进一步提高目标检测精度,提出了一种改进的基于DenseNAS的神经网络架构搜索方法以自动构建铭牌检测CNN。首先,基于改进DenseNAS的Head层,设计了可搜索的、融合深浅层特征的子网模块(CSP-Block1和CSP-Block2)。然后,基于CSP-Block1和CSP-Block2构建的搜索空间,搜索铭牌检测CNN的Backbone和Head。实验结果表明,该方法在一个铭牌5分类的数据集上,耗时约9.35 GPU hours搜索出了最佳神经网络,在测试集上检测精度mAP≈97.3%,比YOLOv5等SOTA方法更高。  相似文献   

16.
行人是城市交通场景下的弱势群体,为了避免碰撞,有必要准确地预测他们的动作行为.为此,本文首次提出城市交通场景中行人动作识别这一问题并提出了有针对性的解决方案.首先,我们创建了一个新的行人动作识别数据集(PARD)作为实验的数据基础,并给出了一个有效的基准模型MFVGG,该模型能够以较低的计算成本达到与之前先进人体动作识别方法相当的性能.为了更针对性地解决问题,本文在两个方面对基准模型进行了改进.首先,利用姿态先验来丰富特征表示,构造双流网络融合双分支编码特征.其次,本文引入双流神经架构搜索得到对于这项任务的最优层级网络架构.实验表明,提出的方法的性能超过了一般人体动作识别相关的先进算法.数据集以及代码公布在https://github.com/Yankeegsj/PARD.  相似文献   

17.
针对由于微博文本的数据特性造成的传统信息搜索方法无法直接实现微博话题内容搜索的问题,提出了一种基于卷积神经网络的微博话题内容搜索方法,对微博安全话题内容进行搜索和匹配排序。该方法包括基于深度卷积神经网络的微博内容筛选和微博内容匹配两部分。微博内容筛选依据深度卷积特征表示进行微博内容筛选,微博内容匹配通过卷积特征非线性变换对筛选结果进行匹配排序。微博内容筛选和微博内容匹配对国民安全话题相关的微博文本内容局部特征进行处理,对筛选结果进行相似度计算从而实现相似度匹配。实验结果表明该方法在微博搜索性能上优于现有同类方法,并验证了所提出方法针对安全话题的微博文本内容搜索的有效性。  相似文献   

18.
深度神经网络在图像识别、语言识别和机器翻译等人工智能任务中取得了巨大进展,很大程度上归功于优秀的神经网络结构设计。神经网络大都由手工设计,需要专业的机器学习知识以及大量的试错。为此,自动化的神经网络结构搜索成为研究热点。神经网络结构搜索(neural architecture search,NAS)主要由搜索空间、搜索策略与性能评估方法3部分组成。在搜索空间设计上,出于计算量的考虑,通常不会搜索整个网络结构,而是先将网络分成几块,然后搜索块中的结构。根据实际情况的不同,可以共享不同块中的结构,也可以对每个块单独搜索不同的结构。在搜索策略上,主流的优化方法包含强化学习、进化算法、贝叶斯优化和基于梯度的优化等。在性能评估上,为了节省计算时间,通常不会将每一个网络都充分训练到收敛,而是通过权值共享、早停等方法尽可能减小单个网络的训练时间。与手工设计的网络相比,神经网络结构搜索得到的深度神经网络具有更好的性能。在ImageNet分类任务上,与手工设计的MobileNetV2相比,通过神经网络结构搜索得到的MobileNetV3减少了近30%的计算量,并且top-1分类精度提升了3.2%;在Cityscapes语义分割任务上,与手工设计的DeepLabv3+相比,通过神经网络结构搜索得到的Auto-DeepLab-L可以在没有ImageNet预训练的情况下,达到比DeepLabv3+更高的平均交并比(mean intersection over union,mIOU),同时减小一半以上的计算量。神经网络结构搜索得到的深度神经网络通常比手工设计的神经网络有着更好的表现,是未来神经网络设计的发展趋势。  相似文献   

19.
现有的神经架构搜索方法无法直观地将网络模型与候选模块以及模型识别准确率之间的关系展示出来;同时很多NAS方法可扩展性差,无法将其搜索策略扩展至任意搜索空间。针对上述挑战,提出了一种可视化模块贡献神经架构搜索方法。提出了模块贡献这个概念,并通过分析贡献计算过程的窘境给出了任意搜索空间下的统一采样原则,利用统一的贡献度指导原则给出了不同搜索空间的贡献度计算策略。针对特定的约束条件通过动态网络规划算法生成神经网络体系结构。大量的实验结果表明该算法在任意搜索空间中的有效性。使用CIFAR-10、CIFAR-100和ImageNet16-120数据集在NAS-Bench-201基准测试上平均准确率达到了93.33%、71.07%、42.69%。  相似文献   

20.
陈乃金 《计算机应用》2012,32(1):158-162
针对可重构计算硬件任务划分通信成本较小化的问题,提出了一种基于深度优先贪婪搜索划分(DFGSP)算法。首先,从待调度的就绪队列中取出队首任务,在某一硬件面积约束下,按深度优先搜索(DFS)方式扫描一个计算密集型任务转换来的有向无环图(DAG),逐个划入满足要求的节点;然后,一遇到不满足面积要求的任务节点时,就计算当前划分模块间输出边数(可量化为通信成本);最后,跳过当前不满足要求的任务节点,继续搜索该点之后处于就绪状态的节点,当搜索到满足要求的点时,按加入该点后不增加当前划分块间输出边数和尽可能填满可重构运算阵列的原则进行。实验结果表明,与现有的簇划分(CBP)、簇层次敏感两种划分算法相比,提出的算法获得了最小划分模块数和平均跨模块间I/O边数最小的均值,通过实际验证,算法显著地改善了硬件任务的划分效果,而且运行开销没有明显增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号