首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This letter reports on a novel reoxidation technique for SiO2 /Si3N4 (ON) stacked films by using N2 O as oxidant. Effect of in-situ rapid thermal N2O reoxidation (RTNO) on the electrical characteristics of thin ON stacked films are studied and compared with those of in-situ rapid thermal. O 2 reoxidation (RTO). Prior to reoxidation, the Si3N4 film was deposited by rapid thermal chemical vapor deposition (RT-CVD) using SiH4 and NH3. Results show that RTNO of the Si3N4 films significantly improves electrical characteristics of ON stacked films in terms of lower leakage current, suppressed charge trapping, reduced defect density and improved time-dependent-dielectric-breakdown (TDDB), as compared to RTO of the Si3N4 films  相似文献   

2.
The performance and reliability of deposited gate oxides for thin film transistors (TFT's) has been studied as a function of rapid thermal annealing (RTA) conditions. The effect of temperature ranging from 700 to 950°C and the annealing ambients including oxygen (O2), argon (Ar), and nitrous oxide (N2O) is investigated. Improvement in charge to breakdown (Qbd) is seen starting from 700°C, with marked increase at 900°C temperature and above. The N2O and Ar ambients result in higher Qbd compared to O2 ambient and we attribute this to reduced interfacial stress. Fourier Transform Infrared spectroscopy (FTIR) is used to qualitatively measure the stress. The bias temperature instability is decreased by RTA. The TFT characteristics are significantly improved with RTA gate oxide. The RTA-Ar anneal at 950°C results in the lowest trap density in TFT's as measured from charge pumping technique  相似文献   

3.
Thin dielectrics grown on silicon wafers by rapid thermal processing in an N2O ambient at temperatures of 1100°C, 1150°C, and 1200°C are discussed. The resulting films, in conjunction with an O2 ambient control were characterized by thickness measurements and electrical performance. Dielectrics formed in N2O in this temperature range were all superior to that prepared in an O2 ambient in terms of interface state generation and flatband voltage shift after constant current stressing. Although all N2O prepared samples exhibited similar cross wafer electrical uniformity, higher growth temperatures favored thickness uniformity. The electrical behavior of the N2O wafers was not strongly dependent on growth temperature; however, a 60-s 1100°C post-oxynitridation N2 anneal was found to significantly reduce subsequent electrical performance. It is also demonstrated that under optimum process conditions, high-quality uniform dielectrics can be formed by RTP in N2O  相似文献   

4.
This paper presents a study of the impact of gate-oxide N2 O anneal on CMOSFET's characteristics, device reliability and inverter speed at 300 K and 85 K. Two oxide thicknesses (60 and 110 Å) and five N2O anneal conditions (900~950°C, 5~40 min) plus nonnitrided process and channel lengths from 0.2 to 2 μm were studied to establish the correlation between the nitrogen concentration at Si/SiO2 interface and the relative merits of the resultant devices. We concluded that one simple post-oxidation N2O anneal step can increase CMOSFET's lifetime by 4~10 times, effectively suppress boron penetration from the P+ poly-Si gate of P-MOSFET's without sacrificing CMOS inverter speed. We also found that the benefits in terms of the improved interface hardness and charge trapping characteristic still exist at cryogenic temperature. All these improvements are found to be closely correlated to the nitrogen concentration incorporated at the Si/SiO2 interface. The optimal N2O anneal occurs somewhere at around 2% of nitrogen incorporation at Si/SiO2 interface which can be realized by annealing 60~110 Å oxides at 950°C for 5 min or 900°C for 20 min  相似文献   

5.
High quality, ultrathin (<30 Å) SiO2/Si3 N4 (ON) stacked film capacitors have been fabricated by in situ rapid-thermal multiprocessing. Si3N4 film was deposited on the RTN-treated poly-Si by rapid-thermal chemical vapor deposition (RTCVD) using SiH4 and NH3, followed by in situ low pressure rapid-thermal reoxidation in N2O (LRTNO) or in O2 (LRTO) ambient. While the use of low pressure reoxidation suppresses severe oxidation of ultrathin Si3N4 film, the use of N2O-reoxidation significantly improves the quality of ON stacked film, resulting in ultrathin ON stacked film capacitors with excellent electrical properties and reliability  相似文献   

6.
A novel capacitor process was successfully implemented in 4 Mb FRAM device by developing a barrier layer rounded by Si3N4 spacer (BRS) scheme. Using this process, it is possible to eliminate an undesired barrier etching damage, which is a major role in degrading ferroelectric properties. The novel capacitor process was generated by etching an Ir barrier layer and rounding the barrier by a Si3N4 spacer before preparing Pb(Zr 1-xTix)O3 (PZT) films. It was observed that uniform sol-gel derived PZT films were prepared on the patterned Ir substrate by using Si3N4 spacer, which provides a smooth edge of the patterned cell. The contact resistance between bottom electrode and polysilicon plug after full integration was monitored below 700 Ω per contact with contact size 0.6×0.6 (μm2). Compared to the ferroelectric capacitor damaged by barrier etching, the novel Pb(Zr1-xTix)O3 (PZT) capacitor exhibited a well-saturated Q-V curve. The fully processed novel capacitor having 1.2×1.2 (μm2) effective area displayed remnant polarization of 14 (μC/cm2) at an operating voltage of 3.0 V. The BRS ferroelectric capacitor showed a reliable retention property until 100 h at 125°C. Same state retention (Qss) was stable with time up to 100 h while opposite state retention (Qos) showed a log-linear decay rate at 125°C thermal stress  相似文献   

7.
Thermal stability and strain relaxation temperature of strained Si 0.91Ge0.09 layers has been investigated using double crystal x-ray diffraction (DCXRD). High quality gate oxynitride layers rapid thermally grown on strained Si0.91Ge0.09 using N2O and the split N2O cycle technique below the strained relaxed temperature is reported. A positive fixed oxide charge density was observed for N2O and split-N2 O grown films. The O2 grown films exhibit a negative fixed oxide charge. The excellent improvements in the leakage current, breakdown field and charge-to-breakdown value of the N2O or split-N2O grown films were achieved compared to pure O2 grown films  相似文献   

8.
We have investigated RIE-induced damage in MOS devices with thermal oxide as well as N2O-annealed oxide as gate dielectrics. A systematic improvement in robustness against RIE-induced damage is seen when N2O flow rate and/or N2O anneal temperature are increased. We have demonstrated a N2O anneal process at 900°C, which provides a robust SiO2/Si interface against plasma damage and hot carrier stress  相似文献   

9.
To ensure the required capacitance for low-power DRAMs (dynamic RAMs) beyond 4 Mb, three kinds of capacitor structures are proposed: (a) poly-Si/SiO2/Ta2O5/SiO2 /poly-Si or poly-Si/Si3N4/Ta2O 5/SiO2/poly-Si (SIS), (b) W/Ta2O5 /SiO2/poly-Si (MIS), and (c) W/Ta2O5 W (MIM). The investigation of time-dependent dielectric breakdown and leakage current characteristics indicates that capacitor dielectrics that have equivalent SiO2 thicknesses of 5, 4, and 3 nm can be applied to 3.3-V operated 16-Mb DRAMs having stacked capacitor cells (STCs) by using SIS, MIS, and MIM structures, respectively, and that 3 and 1.5 nm can be applied to 1.5-V operated 64-Mb DRAMs having STCs by using MIS and MIM structures, respectively. This can be accomplished while maintaining a low enough leakage current for favorable refresh characteristics. In addition, all these capacitors show good heat endurance at 950°C for 30 min. Therefore, these capacitors allow the fabrication of low-power high-density DRAMs beyond 4 Mb using conventional fabrication processes at temperatures up to 950°C. Use of the SIS structure confirms the compatability of the fabrication process of a storage capacitor using Ta2O5 film and the conventional DRAM fabrication processes by successful application to the fabrication process of an experimental memory array with 1.5-μm×3.6-μm stacked-capacitor DRAM cells  相似文献   

10.
A dielectric film technology characterized by a novel multilayer structure formed by oxidation of Ta2O5/Si3 N4 films on polysilicon has been developed to realize high-density dRAMs. The dry oxidation of the Ta2O5/Si3N4 layers was performed at temperatures higher than 900°C. This film has a capacitance per unit area from 5.5 to 6.0 fF/ μm2, which is equivalent to that of a 6.0- to 6.5-nm-thick SiO2. The leakage current at an effective electric field of 5 MV/cm is less than 10-9 A/cm2. Under such an electric field, the extrapolated time to failure for 50% cumulative failure can be as high as 1000 years  相似文献   

11.
Effects of various surface pretreatments of polysilicon electrode prior to Si3N4 deposition on leakage current, time-dependent dielectric breakdown (TDDB) and charge trapping characteristics of thin Si3N4 films deposited on rugged and smooth poly-Si are investigated. Surface pretreatments consist of different combinations of HF clean, rapid thermal H2 -Ar clean, and rapid thermal NH3-nitridation (RTN) and are intended to modify the surface of bottom poly-Si electrode. Results show that RTN treatments lead to lower leakage current, reduced charge trapping, and superior TDDB characteristics as compared to rapid thermal H2-Ar clean  相似文献   

12.
This letter reports that passivation effects of the H2-plasma on the polysilicon thin-film transistors (TFT's) were greatly enhanced if the TFT's have a thin Si3N4 film on their gate-dielectrics. Compared to the conventional devices with only the SiO2 gate dielectric, the TFT's with Si 3N4 have much more improvement on their subthreshold swing and field-effect mobility after H2-plasma treatment  相似文献   

13.
An atmospheric pressure ionization mass spectrometer (APIMS) is used to determine the permeation coefficients for two widely used kinds of polymeric tubing, PF and Kel-F (PCTFE), at 25°C and 75°C. In the experiments, an ultra-high-purity N2 gas flow was maintained through the test tubing. The net impurity uptake by nitrogen due to the permeation of O2, CO2, H2O, and CH4 from surrounding air into the polymeric tubing was measured by APIMS with sub-ppb sensitivities. CH4 had the highest and O2 had the lowest permeation coefficients. Results show that Kel-F was a superior barrier material for all impurities studied. The permeation coefficients for these polymers increased with temperature but did not change significantly with the permeant partial pressure. The permeability of PFA showed a stronger temperature dependence than that of Kel-F  相似文献   

14.
The characteristics of SF6/He plasmas which are used to etch Si3N4 have been examined with experimental design and modeled empirically by response-surface methodology using a Lam Research Autoetch 480 single-wafer system. The effects of variations of process gas flow rate (20-380 sccm), reactor pressure (300-900 mtorr). RF power (50-450 W at 13.56 MHz), and interelectrode spacing (8-25 mm) on the etch rates of LPCVD (low-pressure chemical vapor deposition) Si3N4, thermal SiO2, and photoresist were examined at 22±2°C. Whereas the etch rate of photoresist increases with interelectrode spacing between 8 and 19 mm and then declines between 19 and 25 mm, the etch rate of Si3N 4 increases smoothly from 8 to 25 mm, while the etch rate of thermal SiO2 shows no dependence on spacing between 8 and 25 mm. The etch rates of all three films decrease with increasing reactor pressure. Contour plots of the response surfaces for etch rate and etch uniformity of Si3N4 as a function of spacing and flow rate at constant RF power (250 W) display complex behavior at fixed reactor pressures. A satisfactory balance of etch rate and etch uniformity for Si3N4 is predicted at low reactor pressure (~300 mtorr), large electrode spacing (12-25 mm), and moderate process gas flow rates (20-250 sccm)  相似文献   

15.
A proof of principle experiment to evaluate the efficacy of CO and H2O in increasing the power output for N2O and CO 2 lasing mixtures has been conducted and theoretically analyzed for a blackbody radiation-pumped laser. The results for N2 O-CO, CO2-CO, N2O-H2O and CO2-H2O mixtures are presented. Additions of CO to the N2O lasant increased power up to 28% for N2O laser mixtures, whereas additions of CO to the CO2 lasant, and the addition of H2O to both the CO2 and N2O lasants, resulted in decreased output power  相似文献   

16.
In this paper, we developed a new method to grow robust ultrathin oxynitride (EOT=18 A) film with effective dielectric constant of 7.15. By NH3-nitridation of Si substrate, grown ultrathin Si3N4 With N2O annealing shows excellent electrical properties in terms of significant lower leakage current, very low bulk trap density and trap generation rate, and high endurance in stressing. In addition, this oxynitride film exhibits relatively weak temperature dependence due to a Fowler-Nordheim (FN) tunneling mechanism. This dielectric film appears to be promising for future ultralarge scale integrated (ULSI) devices  相似文献   

17.
Mg-doped GaN epitaxial layers were annealed in pure O2 and pure N2. It was found that we could achieve a low-resistive p-type GaN by pure O2 annealing at a temperature as low as 400°C. With a 500°C annealing temperature, it was found that the forward voltage and dynamic resistance of the InGaN/GaN light emitting diode (LED) annealed in pure O2 were both smaller than those values observed from InGaN/GaN LED annealed in pure N2. It was also found that an incomplete activation of Mg will result in a shorter LED lifetime  相似文献   

18.
The effect of surface roughness of Si3N4 films on time-dependent dielectric breakdown (TDDB) characteristics of SiO2/Si3N4/SiO2 (ONO) stacked films was investigated. The surface roughness of Si3N 4 films-was found to become higher with increasing deposition temperature and to cause the degradation of TDDB characteristics of ONO films in DRAMs. A local thinning of ONO films, evaluated from the TDDB characteristics, agreed with the surface roughness measured by atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM). Dependence of time to breakdown of ONO films on the deposition conditions was interpreted by electric field intensification due to the surface roughness of Si3N4 films  相似文献   

19.
The electrical properties of MOS capacitors with an indium tin oxide (ITO) gate are studied in terms of the number density of the fixed oxide charge and of the interface traps Nf and N it, respectively. Both depend on the deposition conditions of ITO and the subsequent annealing procedures. The fixed oxide charge and the interface-trap density are minimized by depositing at a substrate temperature of 240°C at low power conditions and in an oxygen-rich ambient. Under these conditions, as-deposited ITO films are electrically conductive. The most effective annealing procedure consists of a two-step anneal: a 45-s rapid thermal anneal at 950°C in N2, followed by a 30 min anneal in N2/20% H2 at 450°C. Typical values obtained for Nit and Nf are 4.2×1010 cm-2 and 2.8×1010 cm-2, respectively. These values are further reduced to 1.9×1010 cm-2 and ≲5×109 cm-2, respectively, by depositing approximately 25 nm polycrystalline silicon on the gate insulation prior to the deposition of ITO  相似文献   

20.
Conventionally directionally solidified (DS) and silicon film (SF) polycrystalline silicon solar cells are fabricated using gettering and low temperature plasma enhanced chemical vapor deposition (PECVD) passivation. Thin layer (~10 nm) of PECVD SiO2 is used to passivate the emitter of the solar cell, while direct hydrogen rf plasma and PECVD silicon nitride (Si3N4) are implemented to provide emitter and bulk passivation. It is found in this work that hydrogen rf plasma can significantly improve the solar cell blue and long wavelength responses when it is performed through a thin layer of PECVD Si3N4. High efficiency DS and SF polycrystalline silicon solar cells have been achieved using a simple solar cell process with uniform emitter, Al/POCl3 gettering, hydrogen rf plasma/PECVD Si3N4 and PECVD SiO2 passivation. On the other hand, a comprehensive experimental study of the characteristics of the PECVD Si3N4 layer and its role in improving the efficiency of polycrystalline silicon solar cells is carried out in this paper. For the polycrystalline silicon used in this investigation, it is found that the PECVD Si3N4 layer doesn't provide a sufficient cap for the out diffusion of hydrogen at temperatures higher than 500°C. Low temperature (⩽400°C) annealing of the PECVD Si3N 4 provides efficient hydrogen bulk passivation, while higher temperature annealing relaxes the deposition induced stress and improves mainly the short wavelength (blue) response of the solar cells  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号