首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mucin-like molecules represent an emerging family of cell surface glycoproteins expressed by cells of the hematopoietic system. We report the isolation of a cDNA clone that encodes a novel transmembrane isoform of the mucin-like glycoprotein MGC-24, expressed by both hematopoietic progenitor cells and elements of the bone marrow (BM) stroma. This molecule was clustered as CD164 at the recent workshop on human leukocyte differentiation antigens. CD164 was identified using a retroviral expression cloning strategy and two novel monoclonal antibody (MoAb) reagents, 103B2/9E10 and 105.A5. Both antibodies detected CD164/MGC-24v protein expression by BM stroma and subpopulations of the CD34(+) cells, which include the majority of clonogenic myeloid (colony-forming unit-granulocyte-macrophage [CFU-GM]) and erythroid (blast-forming unit-erythroid [BFU-E]) progenitors and the hierarchically more primitive precursors (pre-CFU). Biochemical and functional characterization of CD164 showed that this protein represents a homodimeric molecule of approximately 160 kD. Functional studies demonstrate a role for CD164 in the adhesion of hematopoietic progenitor cells to BM stromal cells in vitro. Moreover, antibody ligation of CD164 on primitive hematopoietic progenitor cells characterized by the cell surface phenotype CD34(BRIGHT)CD38(-) results in the decreased recruitment of these cells into cell cycle, suggesting that CD164 represents a potent signaling molecule with the capacity to suppress hematopoietic cell proliferation.  相似文献   

2.
Using a polyclonal antiserum against canine CD34, we previously found that CD34 is expressed on canine bone marrow progenitor cells in a manner analogous to that found in humans. To further characterize CD34+ cells and to facilitate preclinical canine stem cell transplant studies, monoclonal antibodies (MoAbs) were raised to CD34. A panel of 10 MoAbs was generated that reacted with recombinant CD34 and with CD34+ cell lines and failed to react with CD34- cell lines. Binding properties of five purified MoAbs were determined by BIAcore analysis and flow cytometric staining, and several MoAbs showed high affinity for CD34. Two antibodies, 1H6 and 2E9, were further characterized, and in flow cytometry studies typically 1% to 3% of stained bone marrow cells were CD34+. Purified CD34+ bone marrow cells were 1.8- to 55-fold enriched for colony-forming unit-granulocyte-macrophage and for long-term culture initiating cells as compared with bone marrow mononuclear cells, whereas CD34- cells were depleted of progenitors. Three autologous transplants were performed with CD34+ cell fractions enriched by immunomagnetic separation. After marrow ablative total body irradiation (920 cGy), prompt hematopoietic recovery was seen with transplanted cell doses of 相似文献   

3.
We have previously shown that the HCA/ALCAM (CD166) glycoprotein, a member of the immunoglobulin family that mediates both homophilic and heterophilic cell-cell adhesion, via the CD6 ligand, is expressed at the surface of all of the most primitive CD38(-/lo), Thy-1(+), rho123(lo), CD34(+) hematopoietic cells in human fetal liver and fetal and adult bone marrow. In the present report we show that HCA is also expressed by subsets of stromal cells in the primary hematopoietic sites that sequentially develop in the human embryo and fetus, ie, the paraaortic mesoderm, liver, thymus, and bone marrow. Adult bone marrow stromal cells established in vitro, including those derived from Stro-1(+) progenitors and cells from immortalized cell lines, express HCA. In contrast, no HCA expression could be detected in peripheral lymphoid tissues, fetal spleen, and lymph nodes. HCA membrane molecules purified from marrow stromal cells interact with intact marrow stromal cells, CD34(+) CD38(-) hematopoietic precursors, and CD3(+) CD6(+) peripheral blood lymphocytes. Finally, low but significant levels of CD6 are here for the first time detected at the surface of CD34(+) rho123(med/lo) progenitors in the bone marrow and in mobilized blood from healthy individuals. Altogether, these results indicate that the HCA/ALCAM surface molecule is involved in homophilic or heterophilic (with CD6) adhesive interactions between early hematopoietic progenitors and associated stromal cells in primary blood-forming organs.  相似文献   

4.
To further define the hierarchy of human hematopoietic progenitor cells, we have attempted to identify antibodies to cell-surface molecules expressed on CD34+ progenitor cell subsets. Herein we describe the utility of a new monoclonal antibody, HCC-1, which binds to a novel epitope of CD59 differentially expressed among CD34+ progenitor cells. HCC-1 subdivides the adult marrow CD34+ population into HCC-1high and HCC-1low/- fractions of approximately equal size. Cobblestone area-forming cells (CAFC) in long-term bone marrow culture were enriched 10-30-fold in CD34+HCC-1high cells compared with CD34+HCC1-low/- cells and two-fold compared with CD34+ cells. When injected into fetal human bone fragments implanted in SCID mice, the CD34+HCC-1high population showed potent engrafting activity leading to the production of myeloid, lymphoid, and erythroid elements, as well as the retention of progenitor cell phenotype. These studies demonstrate that the CD34+HCC-1high population contains primitive pluripotent hematopoietic stem cells. No hematopoietic engrafting activity was detected in the CD34+HCC-1low/- population. Consistent with this finding, simultaneous five-color flow cytometric analysis revealed that HCC-1high cells include virtually all CD34+Thy-1+Lin- cells, a cell population previously characterized as highly enriched for primitive pluripotent hematopoietic stem cells. The ability of CD34+ cells divided into subsets by HCC-1 to produce T cells was assessed by transplantation of sorted cells into human fetal thymus implanted into SCID mice. A higher frequency of thymus-engrafting activity was observed in the CD34+HCC-1high than in the CD34+HCC-1low/- population. Consistent with the limited ability to engraft in the SCID-hu thymus model, the CD34+HCC-1low/- population was shown to contain a low frequency of CD34+CD10+ lymphoid progenitor cells. We conclude that the HCC-1 epitope is expressed at high levels on a subset of CD34+ cells that contain virtually all primitive pluripotent hematopoietic stem cells and that the population of CD59 molecules expressed on CD34+ cells is not homogeneous.  相似文献   

5.
Macrophages and dendritic cells derive from a hematopoietic stem cell and the existence of a common committed progenitor has been hypothesized. We have recently found in normal human marrow a subset of CD34(+) cells that constitutively expresses HLA-DR and low levels of CD86, a natural ligand for the T cell costimulation receptor CD28. This CD34(+) subset can elicit responses from allogeneic T cells. In this study, we show that CD34(+)/CD86(+) cells can also present tetanus toxoid antigen to memory CD4(+) T cells. CD86 is expressed at low levels in macrophages and high levels in dendritic cells. Therefore, we have tested the hypothesis that CD34(+)/CD86(+) cells are the common precursors of both macrophages and dendritic cells. CD34(+)/CD86(+) marrow cells cultured in granulocyte-macrophage colony-stimulating factor (GM-CSF)-generated macrophages. In contrast, CD34(+)/CD86(-) cells cultured in GM-CSF generated a predominant population of granulocytes. CD34(+)/CD86(+) cells cultured in GM-CSF plus tumor necrosis factor-alpha (TNF-alpha) generated almost exclusively CD1a+/CD83(+) dendritic cells. In contrast, CD34(+)/CD86(-) cells cultured in GM-CSF plus TNF-alpha generated a variety of cell types, including a small population of dendritic cells. In addition, CD34(+)/CD86(+) cells cultured in granulocyte colony-stimulating factor failed to generate CD15(+) granulocytes. Therefore, CD34(+)/CD86(+) cells are committed precursors of both macrophages and dendritic cells. The ontogeny of dendritic cells was recapitulated by stimulation of CD34(+)/CD86(-) cells with TNF-alpha that induced expression of CD86. Subsequent costimulation of CD86(+) cells with GM-CSF plus TNF-alpha lead to expression of CD83 and produced terminal dendritic cell differentiation. Thus, expression of CD86 on hematopoietic progenitor cells is regulated by TNF-alpha and denotes differentiation towards the macrophage or dendritic cell lineages.  相似文献   

6.
Successful retroviral gene transfer into human hematopoietic stem cells was demonstrated in preliminary clinical trials at low efficiency. We have shown previously that gene transfer into committed hematopoietic progenitor cells is more efficient using a gibbon ape leukemia virus (GALV)-pseudotyped retroviral vector instead of an amphotropic retroviral vector. Here, we have conducted a systematic study of human hematopoietic progenitor cells after extended transduction with a GALV-pseudotyped retroviral vector. CD34+/CD38lo Cells were transduced for 5 days and reselected according to phenotype after culture and analyzed for cell cycle status, long-term culture-initiating cell (LTC-IC) activity, and gene transfer. Reselection of rare, very primitive progenitor cells was successful. Equal to fresh CD34+/CD38lo cells, >90% of reselected CD34+/CD38lo cells were in G0/G1. CD34+/CD38lo reselection enriched for LTC-IC (10-fold), as compared to freshly isolated CD34+/CD38lo cells with excellent specificity (82.7% of total LTC-IC were recovered in the reselected CD34+/CD38lo population) and recovery (62% of initial LTC-IC number in CD34+/CD38lo cells were recovered in the reselected fraction after transduction). Gene transfer into primitive progenitor cells was efficient with 50.5% G418-resistant LTC-IC colonies and more than 40 copies of vector provirus detectable per 100 nuclei of CD34+/CD38lo cells. To our knowledge, this is the first systematic analysis of phenotype, function, and cell cycle demonstrating retroviral gene transfer into rare, very primitive human hematopoietic progenitor cells. The chosen strategy should be of considerable value for analyzing and improving gene therapy of the hematopoietic system.  相似文献   

7.
8.
Chronic myelogenous leukemia (CML) is characterized by the Philadelphia (Ph) translocation and BCR/ABL gene rearrangement which occur in a pluripotent hematopoietic progenitor cell. Ph-negative (Ph-) hematopoiesis can be restored in vivo after treatment with -interferon or intensive chemotherapy, suggesting that normal stem and progenitor cells coexist with the Ph+ clone. We have previously shown that Ph- progenitors are highly enriched in the CD34(+)HLA-DR- fraction from early chronic phase (ECP) CML patients. Previous studies have suggested that the Ph-translocation represents a secondary clonal hit occurring in an already clonally mutated Ph- progenitor or stem cells, leaving the unanswered question whether Ph- CD34(+)HLA-DR- progenitors are normal. To show the clonal nature of Ph- CD34(+)HLA-DR- CML progenitors, we have compared the expression of BCR/ABL mRNA with X-chromosome inactivation patterns (HUMARA) in mononuclear cells and in CD34(+)HLA-DR+ and CD34(+)HLA-DR- progenitors in marrow and blood obtained from 11 female CML patients (8 in chronic phase and 3 in accelerated phase [AP] disease). Steady-state marrow-derived BCR/ABL mRNA-, CD34(+)HLA-DR- progenitors had polyclonal X-chromosome inactivation patterns in 2 of 2 patients. The same polyclonal pattern was found in the progeny of CD34(+)HLA-DR- derived long-term culture-initiating cells. Mobilization with intensive chemotherapy induced a Ph-, BCR/ABL mRNA- and polyclonal state in the CD34(+)HLA-DR- and CD34(+)HLA-DR+ progenitors from 2 ECP patients. In a third ECP patient, polyclonal CD34(+) cells could only be found in the first peripheral blood collection. In contrast to ECP CML, steady-state marrow progenitors in late chronic phase and AP disease were mostly Ph+, BCR/ABL mRNA+, and clonal. Further, in the majority of these patients, a Ph-, polyclonal state could not be restored despite mobilization with intensive chemotherapy. We conclude from these studies that CD34(+)HLA-DR- cells that are Ph- and BCR/ABL mRNA- are polyclonal and therefore benign. This population is suitable for autografting in CML.  相似文献   

9.
The seco-steroid 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) induces differentiation and inhibits clonal proliferation of HL-60 cells. We analyzed the effect of a novel vitamin D3 analog, EB1089, on normal myeloid and leukemic cells as well as CD34+ cells. EB1089 showed an extraordinary inhibition of clonal growth of HL-60 cells (ED50 = 5 x 10(-11) M) and AML blast cells (ED50 = 9 x 10(-10) M) compared to 1,25(OH)2D3 without suppression of growth of normal human bone marrow CFU-GM. The CD34+ cells from acute myeloid leukemia (AML) blasts were inhibited in a dose-dependent fashion by 1,25(OH)2D3 with an ED50 of 1.2 x 10(-9) M; and even more strikingly, 10(-10) M of EB1089 inhibited all clonal growth of human CD34+ leukemic colony-forming cells. In contrast, both EB1089 and 1,25(OH)2D3 (10(-8) M) showed little or only mild inhibition of CD34+ clongenic hematopoietic cells from normal human peripheral blood (PB); and in liquid culture, EB1089 stimulated the proliferation of normal human CD34+ cells about 2.5 times as compared to control cultures. In order to evaluate the potential use of EB1089 for purging leukemic cells from normal CD34+ progenitor cells for PB stem cell transplantation (PBSCT), normal human PB mononuclear cells (PBMNC) were contaminated with HL-60 cells, and then CD34+ cells purified and treated with EB1089. We found that CD34+ purification and EB1089 purging was able to eliminate approximately 100% of HL-60 leukemic cells with no toxicity to normal CD34+ hematopoietic progenitor cells. These data suggested that purification of CD34+ cells and ex vivo treatment with EB1089 might provide an effective therapeutic approach for PBSCT.  相似文献   

10.
Myelodysplastic syndrome (MDS) is believed to be a stem-cell disorder involving cytopenia and dysplastic changes in three hematopoietic lineages. However, the involvement of pluripotent stem cells and progenitor cells has not been clarified conclusively. To address this issue, we used fluorescence in situ hybridization (FISH) of blood and bone marrow (BM) smears for mature cells and FISH of cells sorted by fluorescence-activated cell sorting for progenitor cells. Seven patients with MDS associated with trisomy 8 were studied. FISH showed +8 in granulocytes, monocytes, and erythroblasts, but not in lymphocytes. Sorted cells of T (CD3(+)), B (CD19(+)), and NK cells (CD3(-)CD56(+)) from peripheral blood did not contain +8, nor did CD34(+) subpopulations from BM including B (CD34(+)CD19(+)), T/NK (CD34(+)CD7(+)) progenitors, and pluripotent stem cells (CD34(+)Thy1(+)). The +8 chromosome abnormality was identified in stem cells only at the level of colony-forming unit of granulocyte-erythrocyte-macrophage-megakaryocyte (CFU-GEMM; CD34(+)CD33(+)). It may thus be concluded that cells affected by trisomy 8 in the context of MDS are at the CFU-GEMM level and that cells of lymphoid lineage are not involved. These results provide new insights into the biology of MDS and suggest that intensive chemotherapy and autologous BM transplantation may become important therapeutic strategies.  相似文献   

11.
Hematopoietic stem cells are capable of extensive self-renewal and expansion, particularly during embryonic growth. Although the molecular mechanisms involved with stem cell maintenance remain mysterious, it is now clear that an intraembryonic location, the aorta-gonad-mesonephros (AGM) region, is a site of residence and, potentially, amplification of the definitive hematopoietic stem cells that eventually seed the fetal liver and adult bone marrow. Because several studies suggested that morphologically defined hematopoietic stem/progenitor cells in the AGM region appeared to be attached in clusters to the ventrally located endothelium of the dorsal aorta, we derived cell lines from this intraembryonic site using an anti-CD34 antibody to select endothelial cells. Analysis of two different AGM-derived CD34(+) cell lines revealed that one, DAS 104-8, efficiently induced fetal-liver hematopoietic stem cells to differentiate down erythroid, myeloid, and B-lymphoid pathways, but it did not mediate self-renewal of these pluripotent cells. In contrast, a second cell line, DAS 104-4, was relatively inefficient at the induction of hematopoietic differentiation. Instead, this line provoked the expansion of early hematopoietic progenitor cells of the lin-CD34(+)Sca-1(+)c-Kit+ phenotype and was proficient at maintaining fetal liver-derived hematopoietic stem cells able to competitively repopulate the bone marrow of lethally irradiated mice. These data bolster the hypothesis that the endothelium of the AGM region acts to mediate the support and differentiation of hematopoietic stem cells in vivo.  相似文献   

12.
The transmembrane glycoprotein CD34 shows a highly restricted expression on a crucial subset of hematopoietic cells. We show here that engagement of particular determinants of CD34 can lead to signal transduction and to enhanced adhesiveness of CD34+ hematopoietic cells. Monoclonal antibodies (MoAbs) directed against O-sialoglycoprotease-sensitive epitopes of CD34 (QBEND10, ICH3, BI.3C5, MY10) but not MoAbs against O-sialoglycoprotease-resistant epitopes (9F2, 8G12) induce actin polymerization in KG-1a and KG-1 cells and strongly enhanced cytoadhesiveness. The capacity to induce adhesion requires cellular energy, divalent cations, and intact cytoskeleton but not de novo protein synthesis. The observed cytoadhesion seems at least in part to be caused by a concomitant activation of the beta 2 integrin cytoadhesion pathway. It can be significantly inhibited with lymphocyte function-associated antigen-1 and intercelluar adhesion molecule-1 antibodies. Protein kinase inhibition analyses suggest that the pathways initiated by engagement of the CD34 molecule with certain CD34 MoAbs involves protein tyrosine kinases but that protein kinase C is not critically involved.  相似文献   

13.
The CD34 antigen is expressed on pluripotent stem cells and the CD34+ cell has been shown to be capable of hematopoietic reconstitution in animal and human autologous grafts. We asked if CD34+ cells could reconstitute hematopoiesis in human allogeneic transplantation from a HLA-mismatched donor. Three pediatric patients with advanced leukemia received allogeneic CD34-enriched marrow cell graft from HLA two (two patients) or three (one patient) loci-mismatched parental donors. CD34+ cell selection was performed with mouse anti-CD34 antibody 9C5 and magnetic beads coated sheep anti-mouse IgG1. 1.53 to 2.48 x 10(9) marrow cells were processed and 2.53 to 7.89 x 10(7) positively selected cells were recovered. The selected population showed 93.7 to 99.0% CD34+ cells and total recovery of CD34+ cells from the starting population was 54.6 to 62.3%. CD34+ cell selection resulted in more than 99.9% depletion of CD5+ cells from the bone marrow. The patients received 2.53 to 7.25 x 10(6) CD34-enriched cells/kg after myeloablative therapy. All patients achieved trilineage engraftment that was confirmed by various genetic markers. Acute graft-versus-host disease (GVHD) was grade 0 (two patients) or grade I (one patient), and hematological recovery was successfully achieved as follows; the days to reach granulocytes over 0.5 x 10(9)/I were 11 to 13 days, reticulocytes over 2% was 18 to 28 days, platelets over 50 x 10(9)/I was 33 to 58 days. One patient is surviving without relapse of leukemia and two patients died after either mixed hematopoietic chimerism or leukemia relapse was observed. These studies suggest that CD34+ marrow cells are capable of hematopoietic reconstitution from HLA two or three loci-mismatched donors even with the lowest dose of mature T cells.  相似文献   

14.
The existence of a common lymphoid progenitor that can only give rise to T cells, B cells, and natural killer (NK) cells remains controversial and constitutes an important gap in the hematopoietic lineage maps. Here, we report that the Lin(-)IL-7R(+)Thy-1(-)Sca-1loc-Kit(lo) population from adult mouse bone marrow possessed a rapid lymphoid-restricted (T, B, and NK) reconstitution capacity in vivo but completely lacked myeloid differentiation potential either in vivo or in vitro. A single Lin(-)IL-7R(+)Thy-1(-)Sca-1loc-Kit(lo) cell could generate at least both T and B cells. These data provide direct evidence for the existence of common lymphoid progenitors in sites of early hematopoiesis.  相似文献   

15.
CD34++ CD38- and CD34+ CD38+ hematopoietic progenitor cells (HPCs) from human fetal liver (FL), cord blood (CB), and adult bone marrow (ABM) were isolated and investigated for their growth characteristics, cytokine requirements and response to two modulators of early hematopoiesis, interferon (IFN)-gamma and macrophage inflammatory protein (MIP)-1alpha. We observed first that a significantly lower percentage of CD34++ cells were CD38- in ABM than in FL and CB. Second, the functional differences between CD34++ CD38- and CD34+ CD38+ cells were less pronounced in FL and CB than in their ABM counterparts. Third, an inverse correlation was found between growth factor response and the ontogenic age of HPCs, and a direct correlation was noted between cytokine requirements and the ontogenic age of HPCs. Fourth, spontaneous colony formation in a classic semisolid culture system was reproducibly obtained only in the ontogenically earliest cells, that is, in FL but not in CB and ABM, in which no such spontaneous colony formation was observed. Fifth, the modulatory effects of IFN-gamma and MIP-1alpha were qualitatively different depending on the ontogenic age of the progenitor source: whereas IFN-gamma was only a selective inhibitor of primitive CD34++ CD38- ABM progenitor cells, it inhibited both CD34++ CD38- and CD34+ CD38+ FL and CB cells to the same extent. In contrast to the effects of MIP-1alpha on ABM, we could not find any consistently stimulatory or inhibitory effects on FL and CB progenitors. In conclusion, important functional and biologic differences exist between FL, CB, and ABM progenitor cells, and these differences could have major implications for the use of these cell populations in preparative protocols of ex vivo expansion, transplantation strategies, or gene transfer experiments.  相似文献   

16.
We investigated the expression of an apoptosis-associated antigen (Fas) (CD95) on hematopoietic progenitor cells in the presence or absence of interferon-gamma (IFN-gamma) and/or tumor necrosis factor-alpha (TNF-alpha). CD34+ cells freshly isolated from bone marrow did not express Fas. However, IFN-gamma and/or TNF-alpha induced the expression of both the mRNA of Fas and Fas itself in a dose-dependent fashion on the surface of CD34+ cells after 48 hours of serum-free culture. IFN-gamma and TNF-alpha had a synergistic effect on the induction of Fas, when both cytokines were added to the culture. The TNF-alpha-induced Fas expression is mediated by p55 TNF-alpha receptor. CD34+ cells cultured in medium alone or with stem cell factor (SCF) showed some slight expression of Fas. When anti-Fas antibody (IgM) was added to CD34+ cells after the induction of Fas expression, CD34+ cells underwent apoptosis, as shown by a decrease in the number of viable cells, morphologic changes, the induction of DNA fragmentation, and a decrease in the number of colony-forming cells (CFC) including colony-forming unit granulocytes/macrophages (CFU-GM) and burst-forming unit erythroids (BFU-E). These observations indicate that IFN-gamma and/or TNF-alpha, well known as negative hematopoietic regulators, induce functional Fas on hematopoietic progenitor cells. The suppression of hematopoiesis by negative hematopoietic regulators may be mediated in part by Fas induction.  相似文献   

17.
The CD34 antigen is expressed by human hematopoietic progenitor and stem cells. These cells are capable of reconstituting marrow function after marrow-ablative chemo-radiotherapy. Several different technologies have been developed for the separation of CD34+ cells from bone marrow or peripheral blood stem cell (PBSC) components. We used an immunomagnetic separation technique to enrich CD34+ cells from PBSC components in anticipation of autologous transplantation for patients with B lymphoid malignancies. Twenty-nine patients enrolled on this study and received mobilization chemotherapy followed by G-CSF. Of these, 21 achieved a peripheral blood CD34+ cell level of at least 2.0 x 10(4)/l required by protocol for separation of the stem cell components. A median of three components per patient was collected for processing. The average CD34+ cell concentration in the components after apheresis was 1.0 +/- 1.2%. After the CD34+ cell selection, the enriched components contained 0.6 +/- 0.6% of the starting nucleated cells. The recovery of CD34+ cells, however, averaged 58.4 +/- 19.2% of the starting cell number, with a purity of 90.8 +/- 6.5%. Overall depletion of CD34- cells was 99.96 +/- 0.06%. Nineteen patients were treated with marrow-ablative conditioning regimens and received an average of 6.2 +/- 2.0 x 10(6) CD34+ cells/kg body weight. These patients recovered to an ANC >0.5 x 10(9)/l at a median of 11 days (range 8-14), and platelet transfusion independence at a median of 9 days (range 5-13). Four patients died of transplant-related complications or relapse before 100 days after transplantation. No patient required infusion of unseparated cells because of failure of sustained bone marrow function. These data demonstrate that peripheral blood-derived CD34+ cells enriched by use of an immunomagnetic separation technique are capable of rapid engraftment after autologous transplantation.  相似文献   

18.
Fas antigen (Fas Ag; CD95) is a cell surface molecule that can mediate apoptosis. Bcl-2 is a cytoplasmic molecule that prolongs cellular survival by inhibiting apoptosis. To investigate the role of both molecules in hematopoiesis, we evaluated the expression of Fas Ag and Bcl-2 on CD34+ hematopoietic progenitor cells expanded in vitro. CD34+ cells isolated from bone marrow were cultured in iscove's modified Dulbecco's medium supplemented with 10% fetal calf serum, 1% bovine serum albumin, 50 ng/mL stem cell factor, 50 ng/mL interleukin-3 (IL-3), 50 ng/mL IL-6, 100 ng/mL granulocyte colony-stimulating factor, and 3 U/mL erythropoietin for 7 days. Colony-forming unit of granulocytes/macrophages (CFU-GM) and burst-forming unit of erythroids (BFU-E) were expanded 6.9-fold and 8.8-fold in number at day 5 of culture, respectively. Freshly isolated CD34+ cells did not express Fas Ag, whereas approximately half of them expressed Bcl-2. CD34+ cells cultured with hematopoietic growth factors gradually became positive for Fas Ag and rapidly lost Bcl-2 expression. Furthermore, apoptosis was induced in the cultured CD34+ population when anti-Fan antibody (IgM; 1 microgram/mL) was added, as shown by significant decrease in the number of viable cells, morphologic changes, induction of DNA fragmentation, and significant decrease in the number of clonogenic progenitor cells including CFU. GM and BFU-E. These results indicate that functional expression of Fas Ag is induced on CD34+ cells expanded in vitro in the presence of hematopoietic growth factors. Induction of Fas Ag and downregulation of Bcl-2 may be expressed as part of the differentiation program of hematopoietic cells and may be involved in the regulation of hematopoiesis.  相似文献   

19.
20.
The transplantation of allogeneic peripheral blood progenitor cells (PBPC) provides complete and sustained hematopoietic and lymphopoietic engraftment. In healthy donors, large amounts of PBPC can be mobilized with hematopoietic growth factors. However, the high content of immunocompetent T-cells in apheresis products may expose recipients of allogeneic PBPC to an elevated risk of acute and chronic graft-versus-host disease. Thus, the use of appropriate T-cell reduction, but not depletion might reduce this risk. The hazards of graft rejection and a higher relapse rate can be avoided by maintaining a portion of the T-cells in the graft. The positive selection of CD34+ cells from peripheral blood preparations simultaneously provides an approximately 1000-fold reduction of T-cells. These purified CD34+ cells containing committed and pluripotent stem cells are suitable for allogeneic transplantation and can be used in the following instances: 1. As hematopoietic stem and progenitor cell transplantation instead of bone marrow cells, from HLA-identical family donors; 2. for increasing the stem cell numbers from HLA-mismatched or three HLA-loci different family donors in order to reduce the incidence of rejection but without increasing the T-cell number; 3. boosting of poor marrow graft function with stem cells from the same family donors; 4. transplantation from volunteer matched unrelated donors; 5. split transplantation of CD34+ and T-cells; 6. addition of ex vivo expanded CD34+ cells to blood cell or bone marrow transplantation; 7. generation of antigen specific immune effector cells and antigen presenting cells for cell therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号