首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen embrittlement of high strength pipeline steels   总被引:4,自引:0,他引:4  
A comparison was made between three API grade pipeline steels (X60, X80 and the X100 grade) from the point of view of their susceptibility to hydrogen embrittlement. The main aim was to determine whether the development of higher strength materials led to greater susceptibility to hydrogen embrittlement. This was achieved by straining at 2.8 × 10−5 s−1 after cathodic charging. The results showed that there is a distinct susceptibility to loss of ductility after charging and this tends to increase with the strength level of the steel at a charging current density above 0.44 mA mm−2. All three steels exhibited fine cracks parallel to the major rolling direction after charging and an increasing amount of brittleness on the fracture surface.  相似文献   

2.
L.W. Tsay  H.L. Lu 《Corrosion Science》2008,50(9):2506-2511
Notched tensile tests were conducted under a slow displacement rate to evaluate the influences of grain size and aging on hydrogen embrittlement (HE) of T-200 maraging steel. In addition, an electrochemical permeation method was employed to measure the effective diffusivity (Deff) and apparent solubility (Capp) for hydrogen of various heat-treated specimens. The results indicated that the aged (482 °C/4 h) specimens comprised of numerous precipitates led to a raised Capp and a decreased hydrogen diffusivity as compared to those of the solution-treated ones. The solution-treated specimens were resistant to gaseous HE, whereas aged specimens were susceptible to it, implying the strength level was the controlling factor to affect the HE susceptibility of the specimens. Nevertheless, all specimens suffered from sulfide stress corrosion cracking (SSCC) severely but to different degrees. The aged specimens were more likely to form intergranular (IG) fractures in H2S but quasi-cleavage (QC) in H2. For the solution-treated specimens, a fine-grained structure was susceptible to HE in H2S and revealed mainly QC that differed from the IG fracture of the coarse-grained one. The fracture mode of the specimens could also be related to the transport path and / or the supply of hydrogen to the plastic zone of notched specimens in hydrogen-containing environments.  相似文献   

3.
D. Figueroa 《Corrosion Science》2010,52(5):1593-1602
This paper describes how hydrogen transport affects the severity of hydrogen embrittlement in 300 M and AerMet100 ultra high strength steels. Slow strain rate tests were carried out on specimens coated with electrodeposited cadmium and aluminium-based SermeTel 1140/962. Hydrogen diffusivities were measured using two-cell permeation and galvanostatic charging methods and values of 8.0 × 10−8 and 1.0 × 10−9 cm2 s−1 were obtained for 300 M and AerMet100, respectively. A two-dimensional diffusion model was used to predict the hydrogen distributions in the SSR specimens at the time of failure. The superior embrittlement resistance of AerMet100 was attributed to reverted austenite forming around martensite laths during tempering.  相似文献   

4.
L.W. Tsay  S.C. Yu  D.-Y. Lin 《Corrosion Science》2007,49(10):4028-4039
Slow displacement rate tensile tests were carried out to assess the effect of hydrogen embrittlement on notched tensile strength (NTS) and fracture characteristics of AISI 316L and 254 SMO stainless steel (SS) plates and welds. 254 SMO generally exhibited a better resistance to hydrogen embrittlement than 316L. The strain-induced transformation of austenite to martensite in the 316L SS was responsible for the high hydrogen embrittlement susceptibility of the alloy and weld. Sensitized 254 SMO (i.e., heat-treated at 1000 °C/40 min) base plate and weld comprised of dense precipitates along grain boundaries. Interfacial separation along solidified boundaries was observed with the tensile fracture of 254 SMO weld, especially the sensitized one. Dense grain boundary precipitates not only reduced the ductility but also raised the susceptibility to sulfide stress corrosion cracking of the sensitized 254 SMO plate and weld.  相似文献   

5.
6.
The degree of hydrogen embrittlement for several fastener grade steels has been determined. While microstructural alteration resulted in some improvement in resistance to hydrogen embrittlement, the overriding factor contributing to susceptibility of the steel was strength. The degree of susceptibility of the microstructures to hydrogen embrittlement, ranked in increasing order, is as follows: fine pearlite, bainite, tempered martensite. The effects of alloying were also assessed by comparing results from different fastener grade steels with similar microstructures. In most cases, the alloy chemistry had little effect, presumably due to trap saturation associated with this testing technique.  相似文献   

7.
The effects of tungsten (W) additions (0, 0.1, 0.5 and 1 wt.%) on the hydrogen embrittlement behaviour of microalloyed steels were systematically investigated by means of slow strain rate tests on circumferentially notched cylindrical specimens, and the mechanism of hydrogen-induced embrittlement was discussed. W addition is found to increase the activation energy of hydrogen desorption. Microstructural features affect the hydrogen embrittlement behaviour and fracture modes of microalloyed steels. It is suggested that the hydrogen-induced embrittlement in the studied microalloyed steels with different W additions is caused by the combined effects of decohesion and internal pressure in the presence of hydrogen.  相似文献   

8.
The impact of a temperature excursion on the subsequent stress corrosion crack growth at the normal operating temperature has been investigated for 321 stainless steel (UNS32100) and 316L stainless steel (UNS31603) using precracked compact tension specimens. Although the data are preliminary the indication is that once crack growth has initiated in 321 SS at the elevated temperature, 130 °C in this study, the crack growth may be sustained at the lower temperature (40 °C), at least over the exposure time of about 700 h. However, the growth rate of 316L SS at the lower temperature was significantly lower than for 321 SS and tended to zero after 2000 h. For the 316 SS a temperature transient should not impact on structural integrity, provided it is short in duration.  相似文献   

9.
10.
《Corrosion Science》2004,46(7):1633-1647
The hydrogen trapping characteristics of 13CrNiMo martensitic steel weld metals, with different austenite contents resulting from different post-weld heat treatments, have been analysed. Scanning electron microscopy and X-ray diffraction have been used to study stable austenite resulting from intercritical tempering of these soft martensitic stainless steels weld metals. Austenite contents up to 25 vol.% have been obtained. Hydrogen diffusion and permeation coefficients have been obtained from an analysis of the permeation rate of hydrogen through these materials. A decrease of the hydrogen apparent diffusion coefficient is observed when the tempering temperature is increased in the range ; this decrease is attributed to changes in the martensitic matrix as well as to the increase of austenite content. The role of the austenite phase on trapping is discussed.  相似文献   

11.
The stress corrosion and hydrogen embrittlement behavior of AISI 1080 steel employed in concrete prestressing tendons was studied with different experimental techniques. A simulated concrete pore solution, with and without contaminants such as chloride, sulfate and thiocyanate ions was used. For comparison purposes the standard 20% ammonium thiocyanate solution was also employed. Polarization curves, slow strain rate tests and fracture mechanics tests were used to evaluate the influence of parameters such as potential, temperature (between 0 and 100 °C), and tempering temperature of the steel. The results have shown that the fracture mechanism of the stress corrosion cracking process is associated with hydrogen action.  相似文献   

12.
D. Hardie  J. Xu  E. A. Charles  Y. Wei   《Corrosion Science》2004,46(12):3089-3100
An investigation was carried out of the effect of hydrogen absorption on the tensile ductility of composite specimens representing stainless steel weld overlays on low alloy steel substrates as used in the fabrication of hydrogenators. Specimens of the two stainless steels (AISI 309 and 347) involved in hydrogen cracking were also fractured in tension at strain rates between 5.9 × 10−6 and 1.5 × 10−3 s−1 after thermal charging with hydrogen. Results indicated that only the 347 samples suffered significant embrittlement by hydrogen and the original ductility could be restored by subsequent annealing for a time and temperature determined by the hydrogen diffusivity.  相似文献   

13.
Monophasic and multiphasic (two and three phases) sintered stainless steels were prepared both considering premixes of AISI 316LHC and AISI 434LHC stainless steels powders and using a prealloyed duplex stainless steel 25% Cr, 5% Ni, 2% Mo powder. Their fatigue crack propagation resistance was investigated both in air and under hydrogen charging conditions (0.5 M H2SO4 + 0.01 M KSCN aqueous solution; applied potential = −700 mV/SCE), considering three different stress ratios (R = 0.1; 0.5; 0.75). Fatigue crack propagation micromechanisms were investigated by means of fracture surface scanning electron microscope (SEM) analysis.For all the investigated sintered stainless, fatigue crack propagation resistance is influenced by hydrogen charging and an increase of crack growth rates dependent on the steel microstructure is obtained. Experimental results also allow to identify the sintered stainless steel obtained from the prealloyed 25% Cr, 5% Ni, 2% Mo powder as the most resistant to fatigue crack propagation in air and under hydrogen charging conditions.  相似文献   

14.
Stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of the sensitized stainless steels of type 304, 310 and 316 were investigated as a function of test temperature in boiling saturated magnesium chloride (MgCl2) solutions under a constant applied stress condition. The test temperature dependence of fracture appearance and three parameters of time to failure (tf), steady-state elongation rate (lss) and transition time to time to failure ratio (tss/tf) suggests that type 304 suffered SCC and HE, while type 316 suffered only HE and type 310 SCC. It was also found that the test temperature dependence of three parameters for the sensitized type 304 and 310 was almost similar to that of the solution annealed stainless steels, whereas that of type 316 showed a clear difference between sensitized and solution annealed specimens. The relationships between the logarithms of the time to failure and the steady-state elongation rate became a straight line for all stainless steels. However, its slope depended upon the fracture mode; −2.0 for SCC and −1.5 for HE. This showed that the steady-state elongation rate was the parameter for predicting the time to failure for the stainless steels in the MgCl2 solutions. The results obtained were explained in terms of martensite transformation, hydrogen entry site, sensitization, and so on.  相似文献   

15.
C.L. Lai  W. Kai 《Corrosion Science》2009,51(2):380-386
The effects of cold-rolling (20% thickness reduction) and sensitization treatment (600 °C/10 h) on the microstructure, tensile properties and susceptibility to stress corrosion cracking of 304 stainless steel in 80 °C MgCl2 (40 wt.%) solution were investigated. The increase in hydrogen traps, which retarded hydrogen diffusion to the strained region, accounted for the low loss in notched tensile strength (NTS) of such a cold-rolled specimen, as compared to the solution-treated specimen in the corrosive environment. By contrast, the high NTS loss of sensitized specimens in MgCl2 solution was attributed mainly to the formation of stress-induced martensite near grain boundary regions.  相似文献   

16.
Stress corrosion cracking (SCC) susceptibility of austenitic Fe18Cr10Mn alloys with 0.3N, 0.6N and 0.3N0.3C was investigated in aqueous chloride environment using a slow strain rate test method. The SCC susceptibility of Fe18Cr10Mn alloys in 2 M NaCl solution at 50 °C under constant anodic potential condition decreased with increase in N content from 0.3 to 0.6 wt%, and with addition of 0.3 wt% C to the Fe18Cr10Mn0.3N alloys. The present study strongly suggested that the beneficial effects of N and C on the SCC behavior of Fe18Cr10Mn alloys would be associated with the resistance to pitting corrosion initiation and the repassivation kinetics.  相似文献   

17.
Abstract

This paper summarises the results obtianed in the MICAT (Mapa Ibero-Americano de Corrosão Atmosférica (Latin American Map of Atmospheric Corrosion)) atmospheric corrosion project (an Iberoamerican project on atmospheric corrosion, involving 14 countries and 75 atmospheric test sites) for zinc specimens exposed for 1–4 years in 21 rural and urban atmospheres of the Latin American region. During the study, all of these atmospheres were characterised according to international standards. Complementary morphological and chemical studies were carried out using scanning electron microscopy coupled with energy dispersive spectrometry (SEM–EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) techniques, in order to correlate atmospheric characteristics and the properties of zinc corrosion product layers (ZCPLs). Soluble salts retained in these ZCPLs were also determined. The study has provided clear evidence about the wide range of zinc corrosion rates occurring in rural atmospheres and suggests an interpretation of this behaviour.  相似文献   

18.
D. Figueroa 《Corrosion Science》2008,50(4):1066-1079
This paper describes an investigation of electrodeposited Zn-14% Ni and aluminium-based SermeTel 1140/962 coatings as possible replacements for cadmium. Slow strain rate tests were performed to measure the extent of direct hydrogen embrittlement of a high strength steel substrate as a result of the coating process and of hydrogen re-embrittlement caused by coating corrosion. The level of re-embrittlement was shown to depend on both the electrochemical potential of the coating and its barrier properties. Zn-14% Ni coatings caused the most re-embrittlement as they had the most active potential and contained through-thickness defects which left the steel exposed to hydrogen uptake. The microstructure of the high strength steel was also shown to be an important factor affecting the extent of embrittlement. AerMet 100 steel was more resistant than 300M steel and this was attributed to the presence of reverted austenite surrounding the martensite laths in AerMet 100, which trapped absorbed hydrogen and prevented a critical hydrogen concentration being reached in the more susceptible martensite phase.  相似文献   

19.
The susceptibility to environmental embrittlement (EE) of automobile spring steels was investigated using six different steels. Slow strain rate tensile test and thermal desorption spectroscopic analysis were applied to specimens subjected to wet-dry cyclic corrosion tests in a NaCl solution. Experimental results revealed that the reduction in ductility after the corrosion tests was pronounced with increasing strength level. This degradation was closely associated with the resistance to pitting corrosion. Consequently, the hydrogen absorbed in steel and the corrosion pit as a geometric damage were responsible for the EE of spring steels. The hydrogen in rust layer had no significant influence on the EE.  相似文献   

20.
Fatigue crack growth tests were performed to evaluate the susceptibility to hydrogen-enhanced crack growth of AISI 304 and 316 stainless steels (SSs). Sensitization treatment at 650 °C 100 h played little effect on the fatigue crack growth behavior in air, regardless of testing specimens. However, hydrogen accelerated the fatigue crack growth of various specimens to different degrees; sensitized specimens were more susceptible as compared with the un-sensitized ones.

Fatigue fracture appearance of various specimens tested in air exhibited mainly transgranular fatigue fracture together with rarely intergranular fracture and twin boundary separation. Meanwhile, intergranular fracture was found for sensitized specimens tested in hydrogen. Extensive quasi-cleavage fracture related to the strain-induced martensite accounted for the hydrogen-accelerated fatigue crack growth of unstable austenitic SSs. On the other hand, the lower susceptibility of 316H specimens could be attributed to the partial austenite transformation, as evidenced by a mixture of transgranular fracture feature and quasi-cleavage.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号