首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Materials Research Bulletin》2003,38(13):1695-1703
Mesoporous manganese oxide (MPMO) from reduction of KMnO4 with maleic acid, was obtained and characterized in detail. The characterization of the material was confirmed by high-resolution transmission electron microscopy (HRTEM), X-ray powder diffractometry (XRD) and N2 sorptometry. The results showed that MPMO is a pseudo-crystalline material with complex network pore structure, of which BET specific surface area is 297 m2/g and pore size distribution is approximately in the range of 0.7–6.0 nm. The MPMO material turns to cryptomelane when the calcinating temperature rises to 400 °C. The optimum sol–gel reaction conditions are KMnO4/C4H4O4 molar ratio=3, pH=7 and gelation time>6 h.  相似文献   

2.
Mesoporous NiO–SiO2 (MCM-41) silica-matrix composites with various nickel oxide concentrations (NiO : SiO2 = 0.025 : 1 to 0.2 : 1) have been produced by oxide cocondensation under hydrothermal synthesis conditions in the presence of cetyltrimethylammonium bromide as a template and (2-cyanoethyl) triethoxysilane as an organosubstituted trialkoxysilane additive. X-ray diffraction data have been used to evaluate the maximum nickel(II) oxide concentration (NiO : SiO2 = 0.1 : 1) that allows the ordered mesopore structure of MCM-41 to persist in the silica-matrix composites. We have studied the magnetic properties of this material as functions of temperature and magnetic field. The results demonstrate that the magnetic properties of the nanocomposite with NiO : SiO2 = 0.1 : 1 at low temperatures (T < 20 K) are determined by incomplete spin compensation in the matrix and on the surface of the NiO nanoparticles.  相似文献   

3.
Hybrid particles with a core–shell structure have been obtained in the form of monodisperse spherical mesoporous silica particles filled with magnetite and covered with a mesoporous silica shell functionalized with a luminescent dye. The particles have a small root-mean-square size deviation (at most 10%), possess a specific surface area and specific pore volume of up to 250 m2/g and 0.15 cm3/g, respectively, and exhibit visible luminescence peaked at a wavelength of 530 nm. The particles can be used in diagnostics of cancerous diseases, serving simultaneously for therapeutic (magnetic hyperthermia and targeted drug delivery) and diagnostic (contrast agent for magnetic-resonance tomography and luminescent marker) purposes.  相似文献   

4.
Co–Fe bimetallic samples containing 25 wt% total of metal content were prepared by incipient wetness impregnation of cobalt nitrate and iron nitrate salts over hexagonal mesoporous silica (HMS) and SBA-15 supports. Changes in the textural properties and reduction behavior were compared with monometallic cobalt/iron-based samples. The samples were characterized by N2 physisorption, X-ray diffraction (XRD), H2-temperature programmed reduction (TPR), transmission electron microscopy (TEM) and H2 chemisorption. The amount of incorporated metal was estimated by atomic absorption spectroscopy (AAS). Morphological properties revealed that after introduction of the metal to the SBA-15 support, the specific area, pore volume and pore diameter decreased to a lesser extent for bimetallic samples. XRD measurements detected the formation of Co3O4 and CoFe2O4 phases for both bimetallic samples. TPR profiles indicated similar behavior for both the bimetallic and monometallic samples. Higher temperatures were observed for the reducibility of Co–Fe/HMS as compared to Co–Fe/SBA-15. Dispersion values of the bimetallic samples were higher than Fe monometallic samples and lower than Co monometallic samples according to hydrogen chemisorption. The particle size distribution of the bimetallic samples estimated by TEM microphotographs showed a smaller fraction of larger size particles for Co–Fe/SBA-15.  相似文献   

5.
6.
Spherical mesoporous SiO2 and SiO2–TiO2 particles were synthesized by sol–gel method using W/O emulsion under microwave irradiation. In SiO2 system, W/O emulsion was prepared by mixing partially hydrolyzed Si(OC2H5)4 aqueous solution including C18TAC as template with n-hexane solution including polyglycerol polyricinalate as emulsifier. In SiO2–TiO2 system, Ti(OC2H5)4 capped by acetylacetone was added to the aqueous phase. In both cases, spherical products were synthesized by heating of W/O emulsion for 30 min under microwave irradiation. The specific surface area and pore size of spherical products were 800 m2/g and 1.6 nm, respectively, which indicates that the spherical products are mesoporous. These results suggest that sol–gel reaction in water phase proceeds rapidly because microwave quickly and selectively heats up the aqueous solution.  相似文献   

7.
TiO2–SBA-15 complex materials with highly ordered mesostructures have been prepared by a one-step hydrothermal synthesis method of titanium tetraisopropoxide (TTIP) and tetraethoxysilane (TEOS) in an acidic solution using surfactant P123 (EO20PO70EO20) as structure-directing reagent. The prepared materials were characterized by transmission electron microscopy (TEM), small-angle X-ray diffraction patterns (SAXRD), Fourier transformed infrared spectroscopy (FT-IR) and N2 adsorption–desorption experiments. The resulting TiO2–SBA-15 complex materials showed highly ordered mesoporous structure with uniform pore sizes of 5.95 and 8.24 nm, high specific surface areas SBET of 689 m2 g? 1 and 347 m2 g? 1 at different hydrothermal temperatures (100 °C and 130 °C). The photocatalytic activity of these TiO2–SBA-15 mesoporous materials has been studied by 4-chlorophenol decomposition under UV light irradiation. The TiO2–SBA-15 mesoporous materials prepared at the TiO2:SiO2 mass ratios of 25:75, 40:60 and 50:50 showed higher photocatalytic activity than that prepared at the TiO2:SiO2 mass ratio of 75:25.  相似文献   

8.
In this study, ordered mesoporous copper oxide–silica (CuO–SiO2) composite films with CuO/SiO2 molar ratio ≤6% have been prepared. Small-angle X-ray diffraction and transmission electron microscopy investigations show that the mesoporous CuO–SiO2 composite films have a hexagonally ordered pore array nanostructure. Wide-angle X-ray diffraction analysis reveals that the copper oxide and silica in the composite films are non-crystalline. The non-crystalline CuO in the mesoporous composite films has an obvious blue-shift phenomenon of the absorption edge. The calculated band gap energy for CuO is 3.2?eV, which is much higher than its bulk counterparts (1.21–1.5?eV).  相似文献   

9.
In 550 °C and H2 current, the mesoporous nickel–silica composite core–shell microspheres with tunable chamber structures have been successfully prepared by reduction of Ni3Si2O5(OH)4 microspheres, which are synthesized by the reaction between Ni(Ac)2·4H2O and SiO2 microspheres via a self-template approach. The chamber (SiO2 core sizes) and shell thickness (40–150 nm) of the nickel–silica microspheres can be controlled by adjusting the synthetic parameters of Ni3Si2O5(OH)4, such as the reaction time. After reduction, these microspheres still have the same sizes, morphologies, and core–shell structures with porous shell as before. These mesoporous nickel–silica microspheres with large BET surface area, exhibit good catalytic activity in m-dinitrobenzene (m-DNB) and high selectivity of m-phenylenediamine (m-PDA) after 3.5 h, but different selectivity of m-PDA in the progress, showing good potential in the catalyst industry.  相似文献   

10.
Pure and mixed lanthanum and cerium oxides were synthesized via a reverse microemulsion-templated route. This approach yields highly homogeneous and phase-stable mixed oxides with high surface areas across the entire range of La:Ce ratios from pure lanthana to pure ceria. Surprisingly, all mixed oxides show the fluorite crystal structure of ceria, even for lanthanum contents as high as 90%. Varying the La:Ce ratio not only allows tailoring of the oxide morphology (lattice parameter, pore structure, particle size, and surface area), but also results in a fine-tuning of the reducibility of the oxide which can be explained by the creation of oxygen vacancies in the ceria lattice upon La addition. Such finely controlled syntheses, which enable the formation of stable, homogeneous mixed oxides across the entire composition range, open the path towards functional tailoring of oxide materials, such as rational catalyst design via fine-tuning of redox activity.  相似文献   

11.
Mesoporous yttria-stabilized zirconia (YSZ) membranes can be used for liquid phase applications in harsh environments and as supports for ultra-thin dense ceramic, carbonate, or metallic membranes. This article reports on the synthesis and characterization of three-layer mesoporous ceramic membranes consisting of a mesoporous YSZ layer, a macroporous YSZ intermediate layer, and macroporous α-alumina support. The macroporous YSZ intermediate layer was coated on the alumina support using a suspension of submicron-sized YSZ powders, and the mesoporous YSZ layer was obtained by dip-coating with diluted zirconia sol doped with yttrium nitrate. The mesoporous YSZ layer has desired cubic phase structure. Crack-free mesoporous YSZ membranes could be obtained by multiple dip-coating, drying, and calcination using a dilute YSZ sol at a concentration of 0.014 M with the help of using a drying control chemical additive. The 5 times dip-coated mesoporous YSZ membranes were about 1 μm in thickness with an average pore diameter of 3 nm. The mesoporous YSZ membranes exhibited Knudsen separation factor. The characteristics of the dip-coating process for the mesoporous YSZ membranes on the macroporous YSZ support are similar to those on the macroporous alumina support.  相似文献   

12.
Journal of Materials Science - Hybrid materials are intensely studied for potential applications in heterogeneous catalysis. Organic groups at the catalyst surface can modify not only its...  相似文献   

13.
Mixed amphiphilic block copolymers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO–PPO–PEO) and polydimethylsiloxane-poly(ethylene oxide) (PDMS–PEO) have been successfully used as co-templates to prepare ordered mesoporous polymer–silica and carbon–silica nanocomposites by using phenolic resol polymer as a carbon precursor via the strategy of evaporation-induced self-assembly (EISA). The ordered mesoporous materials of 2-D hexagonal (p6m) mesostructures have been achieved, as confirmed by small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and nitrogen-sorption measurements. Experiments show that using PDMS–PEO as co-template can enlarge the pore sizes and reduce the framework shrinkage of the materials without evident effect on the specific surface areas. Ordered mesoporous carbons can then be obtained with large pore sizes of 6.7 nm, pore volumes of 0.52 cm3/g, and high surface areas of 578 m2/g. The mixed micelles formed between the hydrophobic PDMS groups and the PPO chains of the F127 molecules should be responsible for the variation of the pore sizes of the resulting mesoporous materials. Through the study of characteristics of mesoporous carbon and mesoporous silica derived from mother carbon–silica nanocomposites, we think mesoporous carbon–silica nanocomposites with the silica-coating mesostructure can be formed after the pyrolysis of the PDMS–PEO diblock copolymer during surfactant removal process. Such method can be thought as the combination of surfactant removal and silica incorporation into one-step. This simple one-pot route provides a pathway for large-scale convenient synthesis of ordered mesostructured nanocomposite materials.  相似文献   

14.
The paper reports the synthesis of an ordered silica mesostructure of the SBA-15 type inside a macroporous bioactive glass-ceramic scaffold of the type SiO(2)-CaO-K(2)O, to combine the bioactivity of the latter with the release properties of the former, in view of local drug delivery from implants designed for tissue engineering. The standard procedure for SBA-15 synthesis has been modified to minimize the damage to the scaffold caused by the acidic synthesis medium. The composite system has been characterized by means of Scanning Electron Microscopy (coupled with EDS analysis), Small Angle X-Ray Diffraction, Thermogravimetry analysis and Infrared Spectroscopy: the formation of a well ordered hexagonal mesostructure was confirmed. Ibuprofen has been chosen as model drug. The uploading properties have been investigated of the scaffold-mesoporous silica composite as compared with the scaffold as such, and a five-fold increase in the adsorbing properties toward ibuprofen was found, due to the presence of the ordered mesoporous silica. The ibuprofen release to a SBF solution in vitro is complete in 1 day. Retention of bioactivity from the glass-ceramic scaffold after the silica mesostructure incorporation has been observed.  相似文献   

15.
16.
Highly microporous metal-MCM-41 ordered mesoporous structure catalysts having different metal/Si (V, Mo, Nb) atomic ratios and combinations of metal sources were hydrothermally synthesized. The structural properties estimated using different techniques were found to be in agreement with each other. Metals were successfully incorporated into MCM-41 without deteriorating the ordered hexagonal structure. The metal ions in the synthesis solutions probably settled on the hydrophilic end of the template hence the metal incorporation resulted improvements in the micropore structure. Low loading of metals caused an increase in the surface area and pore volume values of the catalysts. The highest total (1310 m2 g?1) and micropore surface area values (1083 m2 g?1) were obtained by Nb incorporation. The micro- and mesopore dimensions of MCM-41 increased from 0.5 to 1.1 nm and from 2.5 to 2.8 nm, respectively, with metal incorporation. Low V/Si ratios and presence of Nb in the starting solution enhanced narrow mesopore size distribution. The pore dimension and wall thickness values estimated from nitrogen adsorption and X-ray diffraction methods were consistent with the corresponding values obtained using transmission electron microscopy.  相似文献   

17.
New gold catalytic system prepared on ceria-modified meso-/macroporous binary metal oxide support (CeO2/TiO2–ZrO2) and used as water–gas shift reaction (WGSR) catalyst is reported. The support was prepared through the surfactant templating technique combining with the use of mixed alkoxide solutions. Ceria-modifying additive and gold were deposited consecutively on the meso-/macroporous TiO2–ZrO2 by deposition-precipitation method. The samples were characterized by powder X-ray diffraction, scanning and transmission electron microscopy, N2 adsorption analysis, and temperature-programmed reduction. The catalytic activity of the new gold-based catalysts was evaluated in WGSR and it was compared with that of gold catalysts supported on simple and binary mesoporous oxides (TiO2, ZrO2, and TiO2–ZrO2) and ceria-modified mesoporous titania support (CeO2/mTiO2). A high degree of synergistic interaction between ceria and support and a positive modification of structural and catalytic properties have been achieved. The new gold catalytic system is found to be a promising catalyst for practical WGSR application.  相似文献   

18.
Silica–graphene oxide composites were synthesized by hydrothermal method with simultaneous functionalization and reduction of graphene oxide (GO) in the presence of mesoporous silica. Two types of silica were used in the study, mesoporous synthetic silica (MSU-F) synthesized by sol-gel method and mesoporous mineral silica (meso-celite) from pseudomorphic synthesis. The infrared spectra of the composites showed the disappearance of the carboxyl peak at 1735 cm-1 which could be due to the reduction of the –COOH group. The enhancement of the band at 1385 cm–1 is attributed to the vibration of the Si–O–C=O moiety formed by reaction of the –COOH group of GO and the silanol (Si–OH) of silica. The Raman spectra of the composites show a diminished intensity ratio of D to G band indicating that GO was reduced to graphene sheets. The TEM images demonstrate the coupling of silica to GO surface revealing dense loading of silica on GO in planar structure.  相似文献   

19.
Mesoporous TiO2 samples, with large specific surface area and high crystallinity, were prepared by a sol–gel method using polyethylene glycol and polyacrylamide (PAM) as composite templates and by two-step calcining process (at 500—700 °C in nitrogen and 500 °C in air). As a comparison, the sample was prepared using same composite templates by one-step calcining process (at 500 °C in air). The samples were characterised by X-ray diffraction, transmission electron microscopy, N2 adsorption–desorption, and diffuse reflectance UV-visible absorption spectra. The results showed that when the samples were fabricated using two-step calcining process, they exhibited typical mesoporous structure, large specific surface area, and high crystallinity. The properties of samples were studied. The results showed that PAM accelerates gel rate. The crystallinity and specific surface areas of samples were increased by using two-step calcining process. Compared with the sample prepared using one-step calcining process, the visible light absorption of samples synthesised by the two-step calcining process was improved.  相似文献   

20.
We demonstrate a biomimetic synthesis methodology that allows us to create Li2O–MgO–P2O5–TiO2 nanocrystalline glass with mesoporous structure at lower temperature. We design a ‘nanocrystal-glass’ configuration to build a nanoarchitecture by means of yeast cell templates self-assembly followed by the controlled in-situ biomineralization of materials on the cell wall. Electrochemically active nanocrystals are used as the lamellar building blocks of mesopores, and the semiconductive glass phase can act both as the ‘glue’ between nanocrystals and functionalized component. The Li2O–MgO–P2O5–TiO2 nanocrystalline glass exhibits outstanding thermal stability, high conductivity and wide potential window. This approach could be applied to many other multicomponent glass–ceramics to fabricate mesoporous conducting materials for solid-state lithium batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号