首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A simple and eco‐friendly method for efficient synthesis of stable colloidal silver nanoparticles (AgNPs) using Mentha pulegium extracts is described. A series of reactions was conducted using different types and concentrations of plant extract as well as metal ions to optimize the reaction conditions. AgNPs were characterized by using UV–vis spectroscopy, transmission electron microscopy, atomic force microscopy, dynamic light scattering, zetasizer, energy‐dispersive X‐ray spectroscopy (EDAX) and Fourier transform infrared spectroscopy (FTIR). At the optimized conditions, plate shaped AgNPs with zeta potential value of ‐15.7 and plasmon absorption maximum at 450 nm were obtained using high concentration of aqueous extract. Efficient adsorption of organic compounds on the nanoparticles was confirmed by FTIR and EDAX. The biogenic AgNPs displayed promising antibacterial activity on Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes. The highest antibacterial activity of 25 µg mL‐1 was obtained for all the strains using aqueous extract synthesized AgNPs. The aqueous extract synthesised AgNPs also showed considerable antifungal activity against fluconazole resistant Candida albicans. The cytotoxicity assay revealed considerable anticancer activity of AgNPs on HeLa and MCF‐7 cancer cells. Overall results indicated high potential of M. pulegium extract to synthesis high quality AgNPs for biomedical applications.Inspec keywords: silver, nanoparticles, nanofabrication, botany, antibacterial activity, biomedical materials, nanomedicine, ultraviolet spectra, visible spectra, transmission electron microscopy, atomic force microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, electrokinetic effects, microorganisms, cellular biophysics, cancerOther keywords: antibacterial activity, antifungal activity, anticancer activity, stable colloidal silver nanoparticle, Mentha pulegium, plant extract, UV‐visible spectroscopy, transmission electron microscopy, atomic force microscopy, DLS, zetasizer, energy‐dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, methanolic extract, aqueous extract, plate‐shaped silver nanoparticle, zeta potential, plasmon absorption maximum, organic compounds adsorption, biogenic silver nanoparticle, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, fluconazole‐resistant Candida albicans, MTT assay, HeLa cancer cell, MCF‐7 cancer cell, Ag  相似文献   

2.
The nanohybrids composed of silver nanoparticles and aromatic polyamide functionalized multiwalled carbon nanotubes (MWCNTs) is successfully synthesized and tested for their antibacterial activity against different pathogens. Prior to deposition of silver nanoparticles, acid treated MWCNTs (MWCNTs-COOH) were successively reacted with p-phenylenediamine and methylmethacrylate to form series of NH2-terminated aromatic polyamide dendrimers on the surface of MWCNTs through Michael addition and amidation. Existence of high abundance of amine groups on the surface of functionalized MWCNTs (f-MWCNTs) provided sites for formation of silver nanoparticles by the reduction of aqueous solution of AgNO3. The silver nanoparticles formed in the resulted f-MWCNTs-Ag nanohybrids were determined to be face centered cubic (fcc) symmetry. The structure and nature of f-MWCNTs and f-MWCNTs-Ag nanohybrids were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction analysis (XRD), Raman spectroscopy and thermogravimetric analysis (TGA). The dispersion state of f-MWCNTs and immobilization of silver nanoparticles on the surface of f-MWCNTs were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Elemental composition of f-MWCNTs-Ag nanohybrids was determined by energy dispersive X-ray spectroscopy (EDS). The antimicrobial activity of f-MWCNTs-Ag nanohybrids were estimated against E. coli, P. aeruginosa and S. aureu and compared with MWCNTs-COOH and f-MWCNTs. The results indicate that functionalization of MWCNTs with aromatic polyamide dendrimers and successive deposition of Ag nanoparticles could play an important role in the enhancement of antimicrobial activity.  相似文献   

3.
4.
Understanding and characterizing microbial activity reduction in the presence of antimicrobial agents can help in the design and manufacture of antimicrobial drugs. We demonstrate the use of an optical tweezer setup in recording the changes in bacterial activity with time, induced by the presence of foreign bodies in a bacterial suspension. This is achieved by monitoring the fluctuations of an optically trapped polystyrene bead immersed in it. Examining the changes in the fluctuation pattern of the bead with time provides an accurate characterization of the reduction in the microbial activity. Here, we report on the effect of addition of silver nanoparticles on bacterial cultures of Pseudomonas aeroginosa, Escherichia coli and Bacillus subtilis. We observe a decrease in the bacterial activity with time for the investigated bacterial samples. This method in our opinion, enables one to track changes in bacterial activity levels as a function of time of contact with the antibacterial agent with greater efficacy than traditional cell counting methods.  相似文献   

5.
Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.  相似文献   

6.
There is a growing need in developing a reliable and eco-friendly methodology for the synthesis of metallic nanoparticles, which may be applied for many nanotechnological applications. Natural compounds such as biopolymers are one of the resources which could be used for this purpose. The present study involves the development of a simple, ecological and user-friendly method in synthesizing silver nanoparticles by using carboxymethylated-curdlan or fucoidan as reducing and stabilizing agents. Reduction of silver ions by these biopolymers occurred when heating at 100 °C, led to the formation of silver nanoparticles in the range of 40–80 nm in dimensions. The silver nanoparticles were formed readily within 10–15 min. Morphological observation and characterization of the silver nanoparticles were performed by using dynamic light scattering (DLS), high-resolution transmission electron microscopy (HRTEM), and UV–vis absorption spectrophotometer. The size of silver nanoparticles can be controlled by using different concentrations of carboxymethylated-curdlan, fucoidan or silver nitrate. This way of silver nanoparticles preparation is easy, fast, user-friendly and suitable for large-scale production.  相似文献   

7.
8.
In the present study, silver nanoparticles (AgNPs) were synthesised by adding 1 mM Ag nitrate solution to different concentrations (1%, 2.5%, 5%) of branch extracts of Eurycoma longifolia, a well known medicinal plant in South–East Asian countries. Characterisation of AgNPs was carried out using techniques such as ultraviolet–visible spectrophotometry, X‐ray diffractrometry, Fourier transform infrared–attenuated total reflection spectroscopy (FTIR–ATR), scanning electron microscopy. XRD analysis revealed face centre cubic structure of AgNPs and FTIR–ATR showed that primary and secondary amide groups in combination with the protein molecules present in the branch extract were responsible for the reduction and stabilisation of AgNPs. Furthermore, antioxidant [2,2‐diphenyl‐1‐picrylhydrazyl and 2,2′‐Azino‐bis(3‐ethylbenzthiazoline‐6‐sulphonic acid)], antimicrobial and anticancer activities of AgNPs were investigated. The highest bactericidal activity of these biogenic AgNPs was found against Escherichia coli with zone inhibition of 11 mm. AgNPs exhibited significant anticancer activity against human glioma cells (DBTRG and U87) and human breast adenocarcinoma cells (MCF‐7 and MDA‐MB‐231) with IC50 values of 33, 42, 60 and 38 µg/ml.Inspec keywords: biomimetics, cancer, antibacterial activity, nanoparticles, silver, microorganisms, cellular biophysics, biomedical materials, nanomedicine, nanofabrication, X‐ray diffraction, Fourier transform infrared spectra, attenuated total reflection, ultraviolet spectra, visible spectra, proteins, molecular biophysics, biochemistryOther keywords: Biomimetic synthesis, anticancer activity, Eurycoma longifolia branch extract‐mediated silver nanoparticles, nitrate solution, medicinal plant, ultraviolet‐visible spectrophotometry, X‐ray diffractometry, Fourier transform infrared‐attenuated total reflection spectroscopy, FTIR‐ATR spectroscopy, scanning electron microscopy, XRD, face centre cubic structure, primary amide groups, secondary amide groups, protein molecules, antioxidant, 2,2‐diphenyl‐1‐picrylhydrazyl, 2,2′‐azino‐bis(3‐ethylbenzthiazoline‐6‐sulphonic acid), antimicrobial activity, bactericidal activity, biogenic silver nanoparticles, Escherichia coli, zone inhibition, DBTRG human glioma cells, U87 human glioma cells, MCF‐7 human breast adenocarcinoma cells, MDA‐MB‐231 human breast adenocarcinoma cells, Ag  相似文献   

9.
In the present work, silver nanoparticles stabilized with L-Cysteine (L-Cys) were synthesized based on the one-pot green process by UV irradiation, in which L-Cysteine acts as biological capping agent. The composition and morphological characteristics of the L-Cys capped AgNPs has been ascertained by different techniques such as UV–vis, FL, XRD, TEM, EDX, FTIR and CD analysis. The results demonstrated the formation of spherical nanoparticles of pure Ag° coated with L-Cys. The antibacterial tests on L-Cys capped AgNPs were performed, exerting effective antimicrobial activity both against E. coli and S. aureus, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 21.9 μg/mL and 175 μg/mL, respectively. Considering this simple and green process, the approach may facilitate new approaches to the manufacture of AgNPs-based antibacterial agent.  相似文献   

10.
ABSTRACT

Here we report a simple, one-pot, inexpensive, and eco-friendly method for the synthesis of silver nanoparticles. The leaf extract of a medicinal plant Nervalia zeylanica was used as reducing and stabilizing agent for the synthesis of nanoparticles by microwave-assisted strategy. The nanoparticles show characteristic surface plasmon peak at 468?nm in UV–vis absorption spectrum. The involvement of phytochemicals in the reduction and stabilization of nanoparticles was confirmed by FTIR analysis. Using X-ray diffraction analysis, the crystalline nature of the nanoparticles was demonstrated. Transmission electron microscopic analysis shows that the nanoparticles were in spherical shape with average particle size of 34.2?nm. The antioxidant studies were performed by the 1,1-diphenyl-2-picryl hydrazyl method. The nanoparticles show excellent scavenging activities than the leaf extract. The IC50 values of silver nanoparticles and the leaf extract, respectively, were 15.20 and 92.83?µg?mL?1. The catalytic activities of synthesized nanoparticles were examined by using them in the reduction of organic dyes. The nanoparticles show excellent catalytic activities and follow pseudo-first-order kinetics. The antimicrobial activities of nanoparticles were analyzed by an agar well diffusion method against six microbial strains and found that the nanoparticles were highly toxic against all the tested microbial strains.  相似文献   

11.
The present contribution deals with one pot method for synthesis of silver nanoparticles through green route using sulfated polysaccharide isolated from marine red algae (Porphyra vietnamensis). The obtained silver nanoparticles showed surface plasmon resonance centered at 404 nm with average particle size measured to be 13 ± 3 nm. FTIR spectra revealed the involvement of sulfate moiety of polysaccharide for reduction of silver nitrate. The capping of anionic polysaccharide on the surface of nanoparticles was confirmed by zeta potential measurement (−35.05 mV) and is responsible for the electrostatic stability. The silver nanoparticles were highly stable at wide range of pH (2-10) and electrolyte concentration (up to 10−2 M of NaCl). The dose dependent effect of synthesized silver nanoparticles revealed strong antibacterial activity against gram negative bacteria as compared to gram positive bacteria.  相似文献   

12.
A facile sonochemical method was developed for preparing colloidal silver nanoparticles (Ag-NPs) in aqueous gelatin solutions. The effect of the reducing agent and Ag+ concentrations, ultrasonic time, and ultrasonic amplitude on the particle size has been investigated. The size of the Ag-NPs decreases with the ultrasonic amplitude and increases with ultrasonic time. Well-dispersed spherical Ag-NPs with a mean particle size of about 3.5 nm have been synthesized under ultrasonic process. The use of gelatin as an eco-friendly stabilizer provides green and economic attributes to this work. This preparation method is general and may be extended to other noble metals, such as Au, Pd and Pt, and may possibly find various additional medicinal, industrial and technological applications.  相似文献   

13.
In the present study, green synthesis and cost effective approach of silver nanoparticles using wild medicinal mushroom Ganoderma applanatum (Pers.) Pat. from Similipal Biosphere Reserve, Odisha, India is reported. The biosynthesised AgNPs were characterised using UV‐visible spectroscopy, particle analyser and scanning electron microscopy studies. It was found by dynamic light scattering analysis, that the average size and charges of the AgNPs were 133.0 ± 0.361 nm and −6.01 ± 5.30 mV, respectively. Moreover, the Fourier transform infrared study was also conducted to identify the biomolecules or functional groups responsible for the reduction of Ag and stabilisation of the AgNPs. The potential biomedical application with reference to antimicrobial activity of the synthesised AgNPs was investigated against some pathogenic microorganisms viz. Escherichia coli, Bacillus subtilis, Staphylococcus epidermidis, Vibrio cholerae, Staphylococcus aureus and Shigella flexneri.Inspec keywords: antibacterial activity, biomedical materials, nanomedicine, nanofabrication, materials preparation, ultraviolet spectra, visible spectra, scanning electron microscopy, Fourier transform infrared spectra, molecular biophysics, reduction (chemical), biochemistry, microorganisms, silver, nanoparticlesOther keywords: green synthesis, antimicrobial activity, silver nanoparticles, wild medicinal mushroom, Ganoderma applanatum Pat, Similipal Biosphere Reserve, Odisha, UV‐visible spectroscopy, particle analyser, scanning electron microscopy, dynamic light scattering analysis, Fourier transform infrared study, biomolecules, functional groups, silver reduction, AgNP stabilisation, biomedical application, pathogenic microorganisms, Escherichia coli, Bacillus subtilis, Staphylococcus epidermidis, Vibrio cholerae, Staphylococcus aureus, Shigella flexneri, Ag

Abbreviations

AgNPs
‐ Silver Nanoparticles
SPR
‐Surface plasmon resonance
AgNO3
‐Silver nitrate
nm
‐ Nanometer
mm
‐Milimetre
  相似文献   

14.
Bacterial cellulose-based antifouling materials have been produced by incorporation of silver nanoparticles for broad-spectrum antimicrobial activity. Three variations of silver nitrate (AgNO3) to reducing agent concentrations have been tried to vary the silver nanoparticle dimension. The formation of silver nanoparticles was also evidenced by the X-ray diffraction, and the crystallite size was found to decrease with increase in NaBH4 concentration. AgBC composites having < 2% (W/W) of silver exhibited 99.9% antimicrobial activity which was sustained up to 72 h against spoiled food derived mixed microbial culture. On the other hand, only 90% activity was observed with colloidal AgNPs due to aggregate formation. Composites displayed superior antimicrobial activity than colloid with equivalent amount of silver. Food stuff was protected from microbial spoilage for 30 days when stored in AgBC nanocomposites, whereas spoilage was noticed within 15 days for food stuff stored in regular polythene bag. Therefore, the AgBC composite having < 2% silver can be used as a lining of regular food packaging material to extend shelf life till 30 days. Toxicity due to high amount of silver can be prevented with these composites and can be safely used in healthcare applications such as food packaging, wound dressing, hospital bed lining and surgical apparels.  相似文献   

15.
A series of intercalated and exfoliated nanocomposites montmorillonite-ulvan was prepared. Ulvan, extracted from the green algae, is a water-soluble polysaccharide biopolymer. Depending on the drying process, air or freeze drying, ulvan were inserted in the interlayer space or adsorbed on the both sides of inorganic layers. The crystallization of water molecules bounded to the ulvan induced the delamination of the layers during the lyophilization. Thermogravimetric experiments show a high percentage (approximately 51%) of organic matter for the freeze dried samples and a lowest one (approximately 17%) for the air dried solids. X-Ray Diffraction patterns exhibit a d(001) varying with the content of organic matter. When the delamination occurs, the (001) reflection disappears. Transmission electron microscopy micrographs show individual layers for the highest amount of ulvan.  相似文献   

16.
The synthesis of nanoparticles by utilising plant extract has revolutionised the field of nanotechnology. In the present study, AgNPs were synthesised by utilising the leaves of Moringa oleifera as reducing and stabilising agent. UV‐visible spectroscopy showed characteristic surface plasmon band in the range of 413–420 nm. Scanning electron microscopy (SEM) elucidated rectangular segments fused together. X‐ray diffraction (XRD) analysis confirmed the crystalline nature of AgNPs and presence of metallic silver ions was confirmed by energy dispersive X‐ray (EDX). The different concentrations (10, 20, 30 and 40 ppm) of AgNPs were exogenously applied on Citrus reticulata to record the disease incidence at different day intervals. The disease intensity was progressively increased in all the applied treatments with the passage of time. The 30 ppm concentration of AgNPs was found to be most suitable concentration for creating the resistance against brown spot disease. Moreover, the effects of AgNPs were also assessed for biochemical profiling in C. reticulata. The enhanced production of endogenous enzymes and non‐enzymatic components was observed in response to 30 ppm concentration of AgNPs. The present work highlighted that green synthesised AgNPs can be as used as biological control of citrus diseases and the enhanced production of secondary metabolites antioxidants.Inspec keywords: nanoparticles, silver, nanofabrication, nanomedicine, biomedical materials, biochemistry, enzymes, molecular biophysics, plant diseases, ultraviolet spectra, visible spectra, scanning electron microscopy, surface plasmon resonance, X‐ray diffraction, X‐ray chemical analysisOther keywords: green synthesis, silver nanoparticles, antimicrobial efficacy, biochemical profiling, Citrus reticulata, plant extract, nanotechnology, medical sciences, environment friendly AgNPs, biomedical fields, leaves, Moringa oleifera, reducing agent, stabilising agent, ultraviolet‐visible spectroscopy, characteristic surface plasmon band, scanning electron microscopy, rectangular shape, X‐ray diffraction analysis, crystalline nature, energy dispersive X‐ray spectroscopy, disease incidence, disease intensity, applied treatments, Alternaria brown spot disease, total phenolic content, dry weight, total flavonoid content, T4 treatment, superoxide dismutase activity, fresh weight, maximum peroxidase production, DPPH radical scavenging assay, biological control, citrus disease, secondary metabolites antioxidants  相似文献   

17.
In this study, the biocompatibility and antimicrobial activity of silver nanoparticles (Ag NPs) were evaluated in vitro and in vivo. The cytotoxicity of Ag NPs (average diameter: 2-5 nm) against CHO-K1 cells was determined via WST-8 assay, and their genotoxicity was examined via Salmonella typhimurium reverse mutation assay (Ames test). The acute toxicity and intracutaneous reactivity of Ag NPs were evaluated using animal models of mice and rabbits, respectively. The antibacterial effects of Ag NPs on the Gram (-) bacterial strains of Escherichia coli ATCC 8739 and Pseudomonas aeruginosa ATCC 9027 and on the Gram (+) bacterial strains of Staphylococcus aureus ATCC 6538p and Bacillus subtilius ATCC 6633 were determined by measuring the minimum inhibitory concentrations. The Ag NPs were highly cytotoxic to the L-929 cells at over 2 ppm but were non-cytotoxic at lower than 1 ppm. Moreover, the Ag NPs at 1 ppm or lower did not show genotoxicity, acute toxicity and intracutaneous reactivity. It was also found that the Ag NPs exerted effective antimicrobial activities on both the Gram (-) and (+) bacterial strains within the range from 0.06 to 0.98 ppm for 50% MIC.  相似文献   

18.
An eco-friendly method was put forward to synthesize Ag nanoparticles (Ag NPs) by using biodegradable starch as a stabilizing agent. The silver ion from AgNO3 was reduced by glucose in soluble starch solution. Morphological observation and characterization of Ag NPs were performed by using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and UV–vis absorption spectroscopy. HRTEM showed that Ag NPs were covered by starch layer to form spherical core-shell Ag/starch NPs with diameter ranging from 5 to 20 nm. XRD pattern confirmed the presence of Ag NPs with face-centered cubic (fcc) structure. All these results indicated that starch played an important role in stabilizing Ag NPs.  相似文献   

19.
By using a bio-mechanochemical approach combining mechanochemistry (ball milling) and green synthesis for the first time, silver nanoparticles (Ag NPs) with antibacterial activity were successfully synthesized. Concretely, eggshell membrane (ESM) or Origanum vulgare L. plant (ORE) and silver nitrate were used as environmentally friendly reducing agent and Ag precursor, respectively. The whole synthesis took 30?min in the former and 45?min in the latter case. The photon cross-correlation measurements have shown finer character of the product in the case of milling with Origanum. UV–Vis measurements have shown the formation of spherical NPs in both samples. TEM study has revealed that both samples are composites of nanosized silver nanoparticles homogenously dispersed within the organic matrices. It has shown that the size and size distribution of the silver nanoparticles is smaller and more uniform in the case of eggshell membrane matrix implying lower silver mobility within this matrix. The antibacterial activity was higher for the silver nanoparticles synthesized with co-milling with Origanum plant than in the case of milling with eggshell membrane.  相似文献   

20.
Silver nanoparticles (SNPs) were synthesised by using the Arial part extract of Dorema ammoniacum D. and characterised by employing UV–visible spectroscopy, Fourier transform infrared spectroscopy and X‐ray diffraction techniques. Transmission electron microscopy and field emission scanning electron microscopy were applied to investigate the morphological structure of the bio‐synthesised SNPs. The antimicrobial activity of SNPs was studied against Gram positive (Bacillus cereus and Staphylococcus aureus) and Gram‐negative (Escherichia coli and Salmonella typhimurium) bacteria by employing the disk diffusion agar process. An extremely antimicrobial effect was observed for SNPs. Utilising D. ammoniacum D. as a mediator for the synthesis of SNPs helped to save time and cost.Inspec keywords: silver, nanoparticles, nanofabrication, nanomedicine, biomedical materials, particle size, antibacterial activity, visible spectra, ultraviolet spectra, microorganisms, field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, surface diffusionOther keywords: green synthesis, silver nanoparticles, Dorema ammoniacum D. extract, antimicrobial analysis, Arial part extract, UV‐visible spectroscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, morphological structure, bio‐synthesised SNPs, antimicrobial activity, gram positive Bacillus cereus bacteria, gram positive Staphylococcus aureus bacteria, gram‐negative Escherichia coli bacteria, gram‐negative Salmonella typhimurium bacteria, disk diffusion agar process, antimicrobial effect, Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号