首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alumina–zirconia–titania (AZT) ceramic membranes coated with iron oxide nanoparticles have been shown to improve water quality by significantly reducing the concentration of disinfection by-product precursors, and in the case of membrane filtration combined with ozonation, to reduce ozonation by-products such as aldehydes, ketones and ketoacids. Commercially available ceramic membranes with a nominal molecular weight cut-off of 5 kilodaltons (kD) were coated 20, 30, 40 or 45 times with sol suspension processed Fe2O3 nanoparticles having an average diameter of 4–6 nm. These coated membranes were sintered in air at 900 °C for 30 min. The effects of sintering and coating layer thickness on the microstructure of the ceramic membranes were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). AFM images show a decreasing roughness after iron oxide coating with an average surface roughness of ∼161 nm for the uncoated and ∼130 nm for the coated membranes. SEM showed that as the coating thickness increased, the microstructure of the coating changed from a fine grained (average grain size of ∼27 nm) morphology at 20 coating layers to a coarse grained (average grain size of ∼66 nm) morphology at 40 coating layers with a corresponding increase in the average pore size from ∼57 nm to ∼120 nm. Optimum water quality was achieved at 40 layers, which corresponds to a surface coating morphology consisting of a uniform, coarse-grained structure with open, nano-sized interconnected pores.  相似文献   

2.
Several compositions of cement paste samples containing multiwalled carbon nanotubes were produced using a small-size vacuum mixer. The mixes had water-to-binder ratios of 0.25 and 0.3. Sulfate resistant cement has been used. The multiwalled carbon nanotubes were introduced as a water suspension with added surfactant admixtures. The used surfactant acted as plasticizing agents for the cement paste and as dispersant for the multiwalled carbon nanotubes. A set of beams was produced to determine the compressive and flexural strengths. The scanning electron microscope and atomic force microscope studies of fractured and polished samples showed a good dispersion of multiwalled carbon nanotubes in the cement matrix. The studies revealed also sliding of multiwalled carbon nanotubes from the matrix in tension which indicates their weak bond with cement matrix. In addition to multiwalled carbon nanotubes also steel wires covered with ferrite needles were investigated to determine the bond strength between the matrix and the steel wire. These later samples consisted of 15-mm-high cylinders of cement paste with vertically cast-in steel wires. As reference, plain steel wires were cast, too. The bond strength between steel wires covered with nano-sized Fe needles appeared to be lower in comparison with the reference wires. The scanning electron microscope studies of fractured samples indicated on brittle nature of Fe needles resulting in shear-caused breakage of the bond to the matrix.  相似文献   

3.
The laser induced etching of semi-insulating GaAs 〈100〉 is carried out to create porous structure under super- and sub-bandgap photon illumination (h v). The etching mechanism is different for these separate illuminations where defect states play the key role in making distinction between these two processes. Separate models are proposed for both the cases to explain the etching efficiency. It is observed that under sub-bandgap photon illumination the etching process starts vigorously through the mediation of intermediate defect states. The defect states initiate the pits formation and subsequently pore propagation occurs due to asymmetric electric field in the pore. Formation of GaAs nanostructures is observed using scanning electron (SEM) and atomic force microscopy (AFM).  相似文献   

4.
Mechanical properties of nanoparticle chain aggregates (NCA) including tensile strength and Young's modulus were measured using an instrument incorporating an AFM tip under SEM imaging. The NCA were studied individually and as network films. Carbon NCA were made by laser ablation of graphite, and SnO2 NCA were made by oxidation of a tin compound. The films were deformable and showed elastic behavior. NCA serve as reinforcing fillers in rubber and films of SnO2 NCA for trace gas detection.  相似文献   

5.
为了解决基于主控温式的石英晶体微天平(Quartz Crystal Microbalance, QCM)露点测量系统中冷凝水粘弹特性影响露点识别准确性的问题,对QCM电极进行疏水处理,改善凝结特性,减小水粘性引起的频率耗散,实现液态水质量变化引起的谐振频率偏移测量。在QCM电极上制备静态水接触角为133° ± 2°的疏水层并对其进行表征,将疏水电极与未经处理的电极用于露点识别实验,并与精密露点仪获得的标准露点进行比对。实验证明,通过疏水处理电极凝结面的方法能够有效提升QCM露点传感器的露点识别精度,为主控温式露点传感器结构的优化设计提供理论和实验依据。  相似文献   

6.
Atomic force microscopy and Quantitative Mobility Spectrum Analysis (QMSA) were applied for characterization and evaluation of the quality of AlGaN/GaN heterostructures. The structural uniformity, growth mode and electrical properties of the heterostructures were determined. The obtained results indicated that the time of growth of the low temperature GaN nucleation layer influenced the morphology and electrical properties of the AlGaN/GaN heterostructure.  相似文献   

7.
等离子体处理是微电子技术加工中一种成熟的工艺方法,引入射频辉光放电产生的低温等离子体对三乙醇胺涂膜QCM(Quartz Crystal Micro-balance)传感器进行表面处理,使传感器的各项性能得以改善。该方法给QCM表面质量识别膜的修饰固定提供了新的思路。实验表明:处理后的传感器对乙醛有较好的选择性及较高的响应灵敏度。传感器的重现性与稳定性均佳,传感器较之涂膜处理前更易于再生且使用寿命大大增长。因而该传感器可用于气相中微量乙醛物质的探测,成本低,操作简单。本文对等离子体处理后性能改善的原因、传感器对有机物蒸汽的响应机理及传感器性能的影响因素等作了初步探讨。  相似文献   

8.
9.
Fatigue crack growth tests are carried out on sheets of an Fe-3.2% Si single crystal with a crystallographic orientation appropriate for striation formation. The behaviour of slip near a crack tip during the loading and unloading parts of a fatigue cycle is observed using an Atomic Force Microscope and a Scanning Electron Microscope. The fracture surfaces are also analysed with an AFM and an SEM. The mechanism of fatigue crack growth is discussed based on the observations, and a fundamental kinematic model for fatigue crack growth is proposed. The model gives a reasonable explanation for both the crack growth and striation formation.  相似文献   

10.
The melting and sintering of two different-sized metallic nanoparticles are simulated by a molecular dynamics method in this work. The particles are partitioned into different regimes where tracing atoms are arranged to investigate the melting and sintering kinetics. The melting of individual particles is firstly investigated and compared with established studies, where the size-dependent melting depression and surface melting phenomenon are revealed. The detailed sintering process of two nickel nanoparticles, 3.52 and 1.76 nanometers in diameter respectively, is subsequently examined by the gyration radius, mean square displacement (MSD), root mean square displacement (RMSD), sintering diffusivity and activation energy. A three-stage sintering scenario is illustrated, and the layered structure shows the regime dependent behavior of diffusivity during the sintering process. Beside the surface diffusion, sintering of different-sized nanoparticles is found to be affected by a few other mechanisms.  相似文献   

11.
The lattice-type-sensitive model has been developed to predict the size-dependent depression of melting entropy and enthalpy of nanoparticles. The size-dependency of melting entropy and enthalpy of nanoparticles has been obtained based on the relation between cohesive energy and melting point of nanoparticles obtained in our previous work. In this model the effects of particle size, lattice and surface packing factors, and the coordination numbers of the lattice and surface crystalline planes are considered. The presented equations of melting entropy and enthalpy have been corroborated by the experimental data of In and molecular dynamic (MD) simulation results of Cu nanoparticles. The model confirms that the size-dependency of the entropy and enthalpy of melting for nanoparticles is quite dependent on their lattice structure.  相似文献   

12.
A set of new surface integral equations (Fredholm equations of the second kind) has been systematically derived from the Stratton-Chu formulation of Maxwell's equations for a two-dimensional TM mode to investigate the interactions of an incident electromagnetic wave with nanostructures, especially metals. With these equations, the surface components (the tangential magnetic field, the normal displacement, and the tangential electric field) on the boundary are solved simultaneously by the boundary-element method numerically. For nanometer-sized structures (e.g., dimension of 10 nm), our numerical results show that surface plasmon resonance causes a strong near-field enhancement of the electric field within a shallow region close to the interface of metal and dielectric. In addition, the corresponding pattern of the far-field scattering cross section is like a dipole. For the submicrometer-sized cases (dimension of several hundreds of nanometers), the numerical results indicate the existence of a standing wave on the backside surface of metals. This phenomenon could be caused by two surface plasmon waves that creep along the contour of metals clockwise and counterclockwise, respectively, and interfere with each other.  相似文献   

13.
The magnetic and thermodynamic properties of adsorbed3He have drawn considerably attention in the last few years. The experiments have been refined recently using different substrates and applied fields. In the ferromagnetic regime the system has been described by the Heisenberg Hamiltonian and its thermodynamics properties are well described at high temperatures by a Heisenberg series expansion. The very low temperature properties are described by calculations using spin wave theory. We present here real space renormalization group calculations that are valid in both domains and specially forTJ, and a new approach which takes into account the finite size of the substrate.  相似文献   

14.
We apply the boundary element method to the analysis of the plasmon response of systems that consist of coupled metallic nanoscatterers. For systems made of two or more objects, the response depends strongly on the individual particle behavior as well as on the separation distance and on the configuration of the particles relative to the illumination direction. By analyzing the behavior of these systems, we determine the smallest interaction distance at which the particles can be considered decoupled. We discriminate the two cases of particle systems consisting of scatterers with the same and different resonance wavelengths.  相似文献   

15.
Directed assembly of 10 nm dodecanethiol stabilized silver nanoparticles in hexane and 14 nm citrate stabilized gold nanoparticles in ethanol was performed by AFM nanoxerography onto charge patterns of both polarities written into poly(methylmethacrylate) thin films. The quasi-neutral silver nanoparticles were grafted on both positive and negative charge patterns while the negatively charged gold nanoparticles were selectively deposited on positive charge patterns only. Numerical simulations were conducted to quantify the magnitude, direction and spatial range of the electrophoretic and dielectrophoretic forces exerted by the charge patterns on these two types of nanoparticles in suspension taken as models. The simulations indicate that the directed assembly of silver nanoparticles on both charge patterns is due to the predominant dielectrophoretic forces, while the selective assembly of gold nanoparticles only on positive charge patterns is due to the predominant electrophoretic forces. The study also suggests that the minimum surface potential of charge patterns required for obtaining effective nanoparticle assembly depends strongly on the charge and polarizability of the nanoparticles and also on the nature of the dispersing solvent. Attractive electrostatic forces of about 2 × 10( - 2) pN in magnitude just above the charged surface appear to be sufficient to trap silver nanoparticles in hexane onto charge patterns and the value is about 2 pN for gold nanoparticles in ethanol, under the present experimental conditions. The numerical simulations used in this work to quantify the electrostatic forces operating in the directed assembly of nanoparticles from suspensions onto charge patterns can easily be extended to any kind of colloid and serve as an effective tool for a better comprehension and prediction of liquid-phase nanoxerography processes.  相似文献   

16.
Single-walled carbon nanotube (SWCNT) films with a high density exhibit broad functionality and great potential in nanodevices,as SWCNTs can be either metallic or semiconducting in behavior.The films greatly benefit from characterization technologies that can efficiently identify and group SWCNTs based on metallic or semiconducting natures with high spatial resolution.Here,we developed a facile imaging technique using scanning electron microscopy (SEM) to discriminate between semiconducting and metallic SWCNTs based on black and white colors.The average width of the single-SWCNT image was reduced to ~9 nm,~1/5 of previous imaging results.These achievements were attributed to reduced surface charging on the SiO2/Si substrate under enhanced accelerating voltages.With this identification technique,a CNT transistor with an on/off ratio of >105 was fabricated by identifying and etching out the white metallic SWCNTs.This improved SEM imaging technique can be widely applied in evaluating the selective growth and sorting of SWCNTs.  相似文献   

17.
Atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) have been used to investigate changes in topography and surface chemical functionality on PAN-based carbon fibres exposed to low-temperature, lowpower, oxygen plasmas. Unsized, type II, Cellion 6000 carbon fibres were treated in oxygen plasmas for 2–60 min at a power of 25 W. Increasing treatment time caused an increase in oxidation from surface alcohol(ether) to carbonyl and carboxyl species, but the total amount of oxidized carbon near the surface remained constant. SEM confirmed that treatments longer than 15 min resulted in pitting on the fibre surface, but even treatments of 60 min did not significantly reduce the overall fibre diameter. AFM showed surface morphology changes after oxygen plasma treatments for 2 and 15 min. 1 m×1 m AFM scans of untreated fibres showed processing grooves with a distribution of depths. Enlarged images along these grooves revealed that their walls were smooth. Oxygen plasma treatments of 2 min roughened fibre surfaces and created holes of the order of 50 nm evenly distributed with a spacing of 150 nm along the bottoms of the grooves. Treatment for 15 min smoothed the overall topography and resulted in smaller holes, of the order of 5–10 nm, with a spacing of < 50 nm. Calculated RMS roughnesses from the AFM data showed an initial increase in roughness with treatment, followed by a decrease to final values lower than those for untreated fibres.  相似文献   

18.
Photocatalytic degradation of oxalic acid adsorbed on the Ag/P25 TiO2 composite nanoparticle films were investigated using ATR-FTIR technique under UV irradiation. Ag/P25 TiO2 composite nanoparticle films with various Ag content were tested. Topography and chemical structure/composition of the composite nanoparticle films were analyzed by AFM and XPS respectively. It was found that in the degradation reaction of the oxalic acid, the presence of only 2% Ag nanoparticles leads to six times more oxalic acid degradation compared to that degraded in the presence of pure P25 TiO2 nanoparticles. The degradation rate of the oxalic acid is three times higher in the case of Ag/TiO2 composite nanoparticle film than in the case of pure TiO2 nanoparticles. It was observed that both the rate of oxalic acid degradation and the degraded amount of the oxalic acid were significantly affected by Ag incorporation.  相似文献   

19.
Kim S  Shafiei F  Ratchford D  Li X 《Nanotechnology》2011,22(11):115301
We demonstrate controlled manipulation of semiconductor and metallic nanoparticles (NPs) with 5-15 nm diameters and assemble these NPs into hybrid structures. The manipulation is accomplished under ambient environment using a commercial atomic force microscope (AFM). There are particular difficulties associated with manipulating NPs this small. In addition to spatial drift, the shape of an asymmetric AFM tip has to be taken into account in order to understand the intended and actual manipulation results. Furthermore, small NPs often attach to the tip via electrostatic interaction and modify the effective tip shape. We suggest a method for detaching the NPs by performing a pseudo-manipulation step. Finally, we show by example the ability to assemble these small NPs into prototypical hybrid nanostructures with well-defined composition and geometry.  相似文献   

20.
We examine the adsorption process and order formation of colloidal nanoparticles on a planar surface with friction. We perform Brownian dynamics simulations with a three-dimensional cell model in which the particle–particle and particle–substrate interactions are modeled on the DLVO theory, and examine the effects of the friction acting between the adsorbed particles and the substrate on the adsorbed structure formed on the substrate. The results obtained are as follows: when the friction is so strong that the adsorbed particles are stuck to the substrate, ordered structures never form, which seems to be quite natural. However, when the magnitude of the frictional force is moderate, an ordered structure can form even with low coverage because the frictional force aids order formation. This is because the friction counterbalances the particles’ Brownian motion, which would otherwise disturb the ordered structure. Furthermore, through a detailed examination of the distribution of the Brownian motion, it is demonstrated that an increase in the friction has a similar effect as a decrease in temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号