首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid-state dye-sensitized solar cells have been fabricated with mesoporous \(\hbox {TiO}_{2 }\) photoanode and N719 dye as photosensitizer. First, \(\hbox {TiO}_{2}\) and non-doped, Zn- and Mg-doped CuCrO\(_{2}\) nanoparticles have been synthesized by sol–gel method. In addition, the \(\hbox {TiO}_{2}\) pastes have been prepared through Pechini-type sol–gel method. The effect of \(\hbox {TiO}_{2}\) particle size, mesoporous \(\hbox {TiO}_{2}\) photoanode thickness and solid-state electrolyte thickness on the efficiency of the fabricated devices has been investigated. Our results show that in spite of the low amount of dye loading for photoanode with large \(\hbox {TiO}_{2}\) nanoparticles (80–180 nm), the dye-sensitized solar cell made from it has higher efficiency than that constructed from the photoanode comprising of small particles about 10–15 nm in size. The higher efficiency is attributed to the longer diffusion length of electrons because of a better electron transport and penetration of a large amount of \(\hbox {CuCrO}_{2 }\) nanoparticles in the porous structure of \(\hbox {TiO}_{2}\) photoanode. By using the doped \(\hbox {CuCrO}_{2}\) nanoparticles, the efficiency has been increased from 0.027% for \(\hbox {TiO}_{2}\)/N719 dye/CuCrO\(_{2}\) to 0.033% for \(\hbox {TiO}_{2}\)/N719 dye/CuCrO\(_{2}\):Zn and further increased to 0.042% for \(\hbox {TiO}_{2}\)/N719 dye/CuCrO\(_{2}\):Mg. The efficiency enhancement by doping is ascribed to the conductivity improvement due to the presence of impurity atoms.  相似文献   

2.
Mesoporous \(\upgamma \)-alumina was synthesized by the microwave-hydrothermal process with a shorter duration time at 150\({^{\circ }}\)C/2 h followed by calcination at 550\({^{\circ }}\)C/1 h. Ag nanoparticles (AgNPs) were impregnated into \(\upgamma \)-alumina under a reducing atmosphere at 450\({^{\circ }}\)C. The synthesized product was characterized by X-ray diffraction (XRD), thermogravimetric (TG)/differential thermal analysis (DTA), X-ray photoelectron spectroscopy (XPS), \(\hbox {N}_{2}\) adsorption–desorption study, field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The BET surface area values of \(\upgamma \)-alumina and Ag-impregnated \(\upgamma \)-alumina were found to be 258 and 230 m\(^{2}\) g\(^{-1}\), respectively. FESEM images showed the formation of grain-like particles of 50–70 nm in size with a flake-like microstructure. The XRD, XPS and TEM studies confirmed the presence of Ag in the synthesized product. Catalytic properties of the product for CO oxidation was studied with the \(T_{50}\) (50% conversion) and \(T_{100}\) (100% conversion) values of 118 and 135\({^{\circ }}\)C, respectively; the enhanced values were compared with the literature reported values.  相似文献   

3.
Pt-decorated \(\hbox {TiO}_{2}\) nanotubes Pt@TiO2 are prepared only by applying a set of facile wet-chemical redox reactions to ion track-etched polycarbonate templates. First, a homogeneous layer of Pt nanoparticles is deposited onto the complex template surface by reducing potassium tetrachloroplatinate with absorbed dimethylaminoborane. Second, the template is coated with a conformal \(\hbox {TiO}_{2}\) layer, using a chemical bath deposition reaction based on titanium(III) chloride. After the removal of the template, the rutile-type \(\hbox {TiO}_{2}\) nanotubes remain decorated with Pt nanoparticles and nanoparticle-clusters on their outside. During the process, neither vacuum techniques nor external current sources or addition of heat are employed. The crystallinity, composition, and morphology of the composite nanotubes are analysed by X-ray diffraction, scanning and transmission electron microscopy as well as by energy-dispersive X-ray spectroscopy. Finally, the obtained materials are examplarily applied in the electrooxidation of ethanol and formic acid, and their performances have been evaluated. Compared to conventional carbon black-supported Pt nanoparticles, the Pt@TiO2 nanotubes show higher reaction rates. Mass activities of 2.36 \(\hbox {A}\hbox { mg}_{\rm Pt}^{-1}\hbox { cm}^{-2}\) are reached in ethanol oxidation and 7.56 \(\hbox {A}\hbox { mg}_{\rm Pt}^{-1}\hbox { cm}^{-2}\) in the formic acid oxidation. The present structures are able to exploit the synergy of Pt and \(\hbox {TiO}_{2}\) with a bifunctional mechanism to result in powerful but easy-to-fabricate catalyst structures. They represent an easily producible type of composite nanostructures which can be applied in various fields such as in catalytics and sensor technology.  相似文献   

4.
Stabilized nickel nanoparticles (SNNPs) were prepared using \(\hbox {Ni(acac)}_{2}\) (\(\hbox {acac} = \hbox {acetylacetonate}\)) via a simple solvothermal method. The synthesis of the nickel nanoparticles was performed in the presence of sodium dodecyl sulphate (SDS) of different concentrations (mole ratios of SDS:\(\hbox {Ni(acac)}_{2} = 1{:}1\), 2:1 and 4:1), as the stabilizer, in order to appraise their influence on the morphology, size, dispersion, magnetic properties and electrochemical activity of the nickel nanoparticles. The synthesized products have been characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, energy-dispersive X-ray spectroscopy, vibrating sample magnetometry and electrochemical studies. It is noteworthy that the average particles size of the SNNPs has been reduced by increasing the SDS concentration, while at high concentration (mole ratio of SDS:\(\hbox {Ni(acac)}_{2} = 4{:}1\)), the small particles tend to coalesce and create a big one. The stabilized Ni nanoparticles could be used as electrode materials for hydrogen evolution in alkaline medium. The electrochemical measurements demonstrated that the higher conductivity and lower value of faraday resistance of the as-prepared samples were when the mole ratio of SDS:\(\hbox {Ni(acac)}_{2}\) was 2:1.  相似文献   

5.
The need for an alternative \({ T}_{1}\) contrast enhancer for magnetic resonance imaging (MRI) has been escalating owing to the toxicity profiles observed with the use of commercial contrast agents. Manganese oxide nanoparticles provide an optimal solution for the problem, as it is an endogenous co-factor for many enzymes in the biological system. In the present work, we have synthesized mesoporous silica nanoparticles encapsulated with manganese oxide nanoparticles as a positive contrast enhancer for MRI applications. Spherical magnetic MnO nanoparticles with divalent oxidation state were also synthesized and utilized as control to compare the efficiency of the nano-hybrid system. MRI showed higher contrast enhancement with the use of nano-hybrid and the relaxivity value for \({ T}_{1}\)-weighted imaging was calculated to be \(2.6~\hbox {mg ml}^{-1}~\hbox {s}^{-1}\). Also, the developed system was validated for its usefulness as a therapeutic system through adsorption studies. Therefore, the nano-hybrid has the potential to be a competent MRI contrast enhancer that could be used for theranostic applications.  相似文献   

6.
Reduced graphene oxide/titanium oxide-nanostructured composite (RGO/\(\text {TiO}_{2})\) was prepared by combining Hummer’s synthesized graphene oxide and solvothermally synthesized \(\text {TiO}_{2}\) nanoparticles (\(\text {TiO}_{2})\) through a facile ultrasonication-mediated mechanical mixing method. Structural and morphological evidences from XRD and SEM results confirmed that the as-prepared \(\text {TiO}_{2}\) composed of mixed phases, anatase phase with body centred tetragonal crystal structured prism-like architecture, rutile phase with primitive tetragonal crystal-structured bipyramid-like architecture and hence, \(\text {RGO/TiO}_{2}\) system exhibited the similar structural and morphological features. Band gap energy of \(\text {RGO/TiO}_{2}\) was reduced from 2.98 to 2.91 eV due to the presence of RGO and hence, the light absorption range was extended to visible region. In addition, RGO acted as the electron acceptor and hence, the separation efficiency of photo-generated electron–hole pairs increased effectively, and this prevented the recombination process in \(\text {RGO/TiO}_{2}\) system. Thus, \(\text {RGO/TiO}_{2}\) system exhibited greater efficiency towards degrading Rhodamine B (RhB) and Rose Bengal (RB) dye pollutants than bare \(\text {TiO}_{2}\) under sonophotocatalytic condition with natural sunlight irradiation. The possible mechanisms responsible for the enhanced efficiency are explained in this study using appropriate characterization techniques.  相似文献   

7.
Nanocrystalline \(\hbox {ZnS:Pb}^{2+}\) phosphor was synthesized by microwave-assisted co-precipitation method. The phase purity and surface morphology of prepared material were investigated using an X-ray diffractometer (XRD) and a scanning electron microscope. The photoluminescence property was studied by near-UV (nUV) excitation. The XRD pattern of prepared phosphor matches well with that of an ICDD (International Center for Diffraction Data) file. Surface morphology of prepared phosphor was found to be in submicron range. As-prepared \(\hbox {ZnS:Pb}^{2+}\) phosphor shows a green emission under nUV excitation. As \(\hbox {Pb}^{2+}\) ions are located on a regular \(\hbox {Zn}^{2+}\) site they produce a green emission band in the range of 400–650 nm, centred at 500 nm, under excitation wavelength of 357 nm, exhibiting luminescence properties typically observed for \(\hbox {Pb}^{2+}\). Effect of concentration of \(\hbox {Pb}^{2+}\) ions on emission intensity was studied. The colour co-ordinates of prepared phosphor were calculated and found to lie in the green region of Commission Internationale de l’Eclairage diagram.  相似文献   

8.
The present work deals with the development of a new ternary composite, \(\hbox {Ag}_{2}\hbox {Se}\)\(\hbox {G}\)\(\hbox {TiO}_{2}\), using ultrasonic techniques as well as X-ray diffraction (XRD), scanning electron microscopy (SEM), high transmission electron microscopy (HTEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and UV–Vis diffuse reflectance spectra (DRS) analyses. The photocatalytic potential of nanocomposites is examined for \(\hbox {CO}_{2}\) reduction to methanol under ultraviolet (UV) and visible light irradiation. \(\hbox {Ag}_{2}\hbox {Se}\)\(\hbox {TiO}_{2}\) with an optimum loading graphene of 10 wt% exhibited the maximum photoactivity, obtaining a total \(\hbox {CH}_{3}\hbox {OH}\) yield of 3.52 \(\upmu \hbox {mol}\,\hbox {g}^{-1}\,\hbox {h}^{-1}\) after 48 h. This outstanding photoreduction activity is due to the positive synergistic relation between \(\hbox {Ag}_{2}\hbox {Se}\) and graphene components in our heterogeneous system.  相似文献   

9.
The present investigation reveals the effect of processing parameters on the properties of alumina–titania (Al\(_{2}\)O\(_{3}\)–TiO\(_{2}\)) nanocomposites. A polymer-assisted (Pluronic P123 triblock co-polymer) co-precipitation route has been employed to synthesize \(\hbox {Al}_{2}\hbox {O}_{3}\)\(\hbox {TiO}_{2}\) nanoparticles. As a surfactant, pluronic P123 polymer exhibits hydrophobic as well as the hydrophilic nature simultaneously which detains the agglomeration and hence the nano size particle have been obtained. Effect of surfactant concentration on morphology and particle size of product has also been investigated. Thermal behaviour of the prepared powder samples have been studied using differential scanning calorimeter/thermal gravimetric analysis and dilatometer. Formation of aluminium-titanate \((\hbox {Al}_{2}\) \(\hbox {TiO}_{5})\) phase has been confirmed using X-ray diffraction analysis. It has been observed by field emission scanning electron microscopy analysis that the particle size reduced effectively (below 100 nm) when polymer-assisted co-precipitation route is used instead of the simple co-precipitation technique. A highly dense microstructure of sintered samples has been obtained, driven by reduced particle size.  相似文献   

10.
We prepared a lead-free ceramic (\(\hbox {Ba}_{0.85}\hbox {Ca}_{0.15})(\hbox {Ti}_{1-x}\hbox {Zr}_{x})\hbox {O}_{3}\) (BCTZ) using the conventional mixed oxide technique. The samples were prepared by an ordinary mixing and sintering technique. In this study we investigated how small amounts of \(\hbox {Zr}^{4+}\) can affect the crystal structure and microstructure as well as dielectric and piezoelectric properties of \(\hbox {BaTiO}_{3}\). X-ray diffraction analysis results indicate that no secondary phase is formed in any of the BCTZ powders for \(0 \le x \le 0.1\), suggesting that \(\hbox {Zr}^{4+}\) diffuses into \(\hbox {BaTiO}_{3}\) lattices to form a solid solution. Scanning electron microscopy micrographs revealed that the average grain size gradually increased with \(\hbox {Zr}^{4+}\) content from 9.5 \(\upmu \!\hbox {m}\) for \(x = 0.02\) to 13.5 \(\upmu \!\hbox {m}\) for \(x = 0.1\); Curie temperature decreased due to the small tetragonality caused by \(\hbox {Zr}^{4+}\) addition. Owing to the polymorphic phase transition from orthorhombic to tetragonal phase around room temperature, it was found that the composition \(x = 0.09\) showed improved electrical properties and reached preferred values of \(d_{33} = 148\) pC \(\hbox {N}^{-1}\) and \(K_{\mathrm{p}} = 27\%\).  相似文献   

11.
Single-phase La-substituted bismuth ferrite (Bi\(_{\boldsymbol {1-x}}\)La\(_{\boldsymbol {x}}\)FeO\(_{\mathbf {3}}\)) nanoparticles have been synthesized by thermal decomposition of a glyoxylate precursor. The crystal structure transition of BiFeO\(_{\mathbf {3}}\) from the rhombohedral (R3c) to the cubic \(\boldsymbol {Pm}\bar {\mathbf {3}}\boldsymbol {m}\) structure by La addition was confirmed by X-ray diffraction and infrared spectrometry methods. Furthermore, the Bi\(_{\boldsymbol {1-x}}\)La\(_{\boldsymbol {x}}\)FeO\(_{\mathbf {3}}\) nanoparticles showed a weak ferrimagnetism behaviour, while the magnetization increased from 0.18 to 0.48 emu g\(^{\mathbf {-1}}\) with La substitution. The Bi\(_{\boldsymbol {1-x}}\)La\(_{\boldsymbol {x}}\)FeO\(_{\mathbf {3}}\) nanoparticles exhibited strong absorption in the visible region with the optical band gap calculated from Tauc’s plot in the range of 2.19–2.15 eV. Furthermore, the effects of La substitution on the photodegradation of the methylene blue (MB) under visible light were also studied. The photodegradation of MB dye was enhanced from 64 to \(\sim \)99% with increasing La substitution from \(\boldsymbol {x =}\) 0 to 0.1 and then decreased to 8% for \(\boldsymbol {x =}\) 0.15.  相似文献   

12.
Commercial PC105 titanium dioxide nanoparticles were studied under mechanical milling process. The effect of milling time and speed on the structural and electronic properties of \(\hbox {TiO}_{2}\) powder was then investigated using X-ray powder diffraction (XRD), dynamic light scattering (DLS), transmission electronic microscopy (TEM), electron paramagnetic resonance (EPR) and UV–visible spectroscopy. The related photo-catalytic properties of the milled nanoparticles were probed following the degradation rate of methylene orange (MO) under UV-light irradiation and through EPR spin-scavenging approach. Comparison with pristine powder shows that milled nanoparticles are significantly less reactive upon illumination, despite decreased radius and hence, higher specific area. Such low yield of reactive species is attributed to the apparition of the amorphous \(\hbox {TiO}_{2}\) and brookite phase upon milling, as well as increased charge carrier recombination as pointed out by the presence of sacrificial electron donor.  相似文献   

13.
In the present paper we suggest the cause and solution of some unidentified X-ray diffraction (XRD) peaks in ferroelectric nanoparticles. Indeed, a relationship between the structurally unfit XRD peaks and domains in the ferroelectric nanoparticles is suggested. \(\hbox {BaTiO}_{3}\), \(\hbox {PbTiO}_{3}\) and \(\hbox {Sr}_{0.5}\hbox {Ba}_{0.5}\hbox {Nb}_{2}\hbox {O}_{6}\) nanoparticles were used as trial samples. Diffraction of X-rays by domain grating was considered for the occurrence of unfit peaks. It was found that domain widths corresponding to some structurally unfit minor peaks of all three trail samples show good agreement to the values estimated from the transmission electron microscopy images. The study can be used to estimate the width of nanodomains (within 5–10 Å) in ferroelectric nanoparticles. Thus, the study seems to be highly important for the advancement of nanoferroelectricity.  相似文献   

14.
Multilayer fullerene-like hydrogenated carbon (FL-C:H) films were synthesized by using the chemical vapour deposition technique with a different flow rate of methane. The typical fullerene-like structure of as-prepared films was investigated by using transmission electron microscopy and Raman spectra. The prepared multilayered FL-C:H films showed a high elastic recovery (\({\sim }\)90\(\%\)), ultra-low friction coefficient (\({\sim }\)0.019) and low wear rate \(({\sim }3.0\times 10^{-9}\,\hbox {mm}^{3}\,\hbox {Nm}^{-1})\) in humid air.  相似文献   

15.
The influence of type and size of nanoparticles on the thermal parameters of some magnetic nanofluids is investigated. Two types of carrier liquids (transformer oil and polypropylene glycol) were combined with two types of iron based magnetic nanoparticles (\(\hbox {Fe}_{3}\hbox {O}_{4}\) and \(\hbox {MnFe}_{2}\hbox {O}_{4})\). Different sizes (10 nm–80 nm) and shapes (spherical, octahedral or cubic) of nanoparticles were obtained depending on the oleic acid/oleylamine molar ratio, which drastically influences the nanocrystals growth rate. This influence is due to the different binding ability of the two stabilizers onto crystal facets. The average size of nanoparticles was 10 nm, 35 nm and 50 nm for \(\hbox {Fe}_{3}\hbox {O}_{4}\) and 10 nm, 20 nm and 80 nm for \(\hbox {MnFe}_{2}\hbox {O}_{4}\) at a concentration of 50 mg\({\cdot }\)ml\(^{-1}\) in all cases. The results obtained by PPE technique indicate that, at this concentration, the presence of the nanoparticles reduces the value of the thermal parameters of pure carrier liquids and both thermal diffusivity and effusivity decrease with increasing nanoparticles size, independently on the carrier liquid. The influence of the nanoparticles size is more pronounced for the thermal effusivity (relative change 24 %) compared with thermal diffusivity (relative change 7 %).  相似文献   

16.
A novel, highly visible light active N-doped \(\hbox {WO}_{3}\) (\(\hbox {N}\)-\(\hbox {WO}_{3})\) is successfully synthesized via thermal decomposition of peroxotungstic acid–urea complex. The photocatalytic activity of \(\hbox {N}\)-\(\hbox {WO}_{3}\) is evaluated for the degradation of amaranth (AM) dye under visible and UVA light along with the role of reactive species, which has not yet been studied for \(\hbox {N}\)-\(\hbox {WO}_{3}\) photocatalysts. Doping of N into substitutional and interstitial sites of \(\hbox {WO}_{3}\) is confirmed by X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy. At a pH of 7, 1 g \(\hbox {l}^{-1}\) of \(\hbox {N}\)-\(\hbox {WO}_{3}\) can completely degrade \(10\,\hbox {mg } \hbox {l}^{-1}\) of AM within 1 h under visible and UVA light. For the degradation of AM by \(\hbox {N}\)-\(\hbox {WO}_{3}\) under visible and UVA light, \(\hbox {h}^{+}\) is found to be the main reactive species, while \(\cdot \hbox {OH}\) contributes to a lesser extent. On the contrary, \(^{1}\hbox {O}_{2}, \cdot \hbox {O}_{2}^{-}\) and \(\hbox {e}^{-}\) show negligible roles. The crucial role of \(\hbox {h}^{+}\) indicates effective suppression of electron–hole recombination after N doping. Dye sensitization and oxidation by reactive species are found to be the major pathway for the degradation of AM under visible and UVA light, respectively.  相似文献   

17.
In recent years, the discovery of metal catalysts for the oxidation of silicon monoxide (SiO) has become extremely important. In first step, the Sn adoption of fullerene (\(\hbox {C}_{60})\) was investigated and then activation of surface of \(\hbox {Sn-C}_{60}\) via \(\hbox {O}_{2}\) molecule was examined. In second step, the SiO oxidation on surface of \(\hbox {Sn-C}_{60}\) via Langmuir Hinshelwood (LH) and Eley Rideal (ER) mechanisms was investigated. Results show that \(\hbox {O}_{2}\hbox {-Sn-C}_{60}\) can oxidize the SiO molecule via \(\hbox {Sn-C}_{60}\hbox {-O-O}^{*} + \hbox {SiO}\rightarrow \hbox {Sn-C}_{60}\hbox {-O-O}^{*}\hbox {-SiO} \rightarrow \hbox {Sn-C}_{60}\hbox {-O}^{*} + \hbox {SiO}_{2}\) and \(\hbox {Sn-C}_{60}\hbox {-O}^{*} + \hbox {SiO}\rightarrow \hbox {Sn-C}_{60} + \hbox {SiO}_{2}\) reactions. Results show that SiO oxidation via the LH mechanism has lower energy barrier than ER mechanism. Finally, \(\hbox {Sn-C}_{60}\) is an acceptable catalyst with high performance for SiO oxidation in normal temperature.  相似文献   

18.
The effect of microgravity on the electrochemical oxidation of ammonia at platinum nanoparticles supported on modified mesoporous carbons (MPC) with three different pore diameters (64, 100, and 137 Å) was studied via the chronoamperometric technique in a half-cell. The catalysts were prepared by a H2 reductive process of PtCl\(_{6}^{\mathrm {4-}}\) in presence of the mesoporous carbon support materials. A microgravity environment was obtained with an average gravity of less than 0.02 g created aboard an airplane performing parabolic maneuvers. Results show the chronoamperommetry of the ammonia oxidation reaction in 1.0 M NH4OH at 0.60 V vs. RHE under microgravity conditions. The current density, in all three catalysts, decreased while in microgravity conditions when compared to ground based experiments. Under microgravity, all three catalysts yielded a decrease in ammonia oxidation reaction current density between 25 to 63% versus terrestrial experimental results, in time scales between 1 and 15 s. The Pt catalyst prepared with mesoporous carbon of 137 Å porous showed the smallest changes, between 25 to 48%. Nanostructuring catalyst materials have an effect on the level of current density decrease under microgravity conditions.  相似文献   

19.
Flower-like CoS hierarchitectures were successfully synthesized through a hydrothermal route in the presence of ethylenediamine as ligand and structure-directing agent. The structure and morphology of the products were characterized by X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy and \(\hbox {N}_{2}\) adsorption–desorption isotherm. Flower-like CoS hierarchitectures are constructed by two-dimensional CoS nanopedals interlaced and stacked with each other. When tested as electrode material for supercapacitors, the as-fabricated CoS delivers a specific capacitance of \(357~\hbox {F g}^{-1}\) at \(0.5~\hbox {A g}^{-1}\). After 2000 repetitive charge–discharge cycles, there is only 12.7% loss of the original specific capacitance. The results signify that the CoS supercapacitor possesses good electrochemical performances, suggesting its potential application in supercapacitor.  相似文献   

20.
In this work, we report on structural, optical, photocatalytic and nitrogen adsorption–desorption characteristics of \(\hbox {WS}_{2 }\) nanosheets developed via a hydrothermal route. X-ray diffraction (XRD) studies have revealed a hexagonal crystal structure, whereas nanodimensional sheets are apparently observed in scanning and transmission electron microscopy (SEM and TEM) micrographs. As compared to the bulk counterpart, the \(\hbox {WS}_{2}\) nanosheets exhibited a clear blue shift. Through Brunauer–Emmett–Teller (BET) surface area analysis, average surface area, pore volume and pore size of the NSs were calculated as 211.5 \(\hbox {m}^{2}~\hbox {g}^{-1}\), 0.433 cc \(\hbox {g}^{-1}\) and 3.8 nm, respectively. The photocatalytic activity of the \(\hbox {WS}_{2}\) nanosheets was also examined with malachite green (MG) as the target dye under both UV and day light (visible) illumination conditions. Accordingly, a degradation efficiency as high as 67.4 and 86.6% were witnessed for an irradiation time duration of 60 min. The nano-\(\hbox {WS}_{2}\) systems have immense potential in optoelectronics, solid-lubrication and other next generation elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号