首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyfluorinated compounds in residential and nonresidential indoor air   总被引:1,自引:0,他引:1  
Indoor air concentrations of fifteen volatile per- and polyfluorinated compounds (PFCs) (five fluorotelomer alcohols (FTOHs), three fluorotelomer acrylates (FTAs), three perfluorinated sulfonamido ethanols (FASEs), and three perfluorinated sulfonamides (FASAs)) were determined in residential and nonresidential indoor air environments. Air samples were taken with passive samplers, consisting of XAD-4 impregnated polyurethane foam (PUF) disks in steel housings. Impregnated PUF disks were extracted by fluidized bed extraction (FBE) using methyl-tert-butyl ether/acetone (1:1) and analyzed by gas chromatography-mass spectrometry. Total PFC indoor air concentrations ranged from 8.2 to 458 ng m(-3). Individual PFC concentrations were between 42 pg m(-3) (6:2 FTA) and 209 ng m(-3) (8:2 FTOH). Concentrations of total FTOHs, FTAs, and FASAs + FASEs ranged from 0.2 to 152 ng m(-3) (FTAs), from 3.3 to 307 ng m(-3) (FTOHs), and from 4.4 to 148 ng m(-3) (FASAs + FASEs). Most elevated individual, group, and total PFC concentrations were detected in two stores selling outdoor equipment, one furniture shop, and one carpet shop. Indoor air concentrations were several orders of magnitude higher than published outdoor air concentrations indicating indoor air environments as sources for PFCs to the atmosphere. Concentrations were used to estimate human exposure to investigated PFCs.  相似文献   

2.
Semivolatile fluorinated organic compounds (FOCs) were measured in archived air sample extracts collected from Hedo Station Observatory (HSO) on Okinawa, Japan and Mount Bachelor Observatory (MBO), Oregon U.S. during the springs of 2004 (MBO and HSO) and 2006 (MBO). Fluorotelomer alcohols (FTOHs) were measured in both Asian and western U.S. air masses, though western U.S. air masses had significantly higher concentrations. Concentrations of fluorotelomer olefins in Asian air masses and 8:2 fluorotelomer acrylate in U.S. air masses were reported for the first time. N-ethyl perfluorooctane sulfonamide, N-methyl perfluorooctane sulfonamido ethanol, and N-ethyl perfluorooctane sulfonamido ethanol were also measured in Asian and western U.S. air masses but less frequently than FTOHs. The atmospheric sources and fate of FTOHs were investigated by estimating their atmospheric residence times, calculating FTOH concentration ratios, investigating FTOH correlations with nonfluorinated semivolatile organic compound concentrations, and determining air mass back trajectories. Estimated atmospheric residence times for 6:2 FTOH, 8:2 FTOH, and 10:2 FTOH were 50, 80, and 70 d, respectively, and the average concentration ratio of 6:2 FTOH to 8:2 FTOH to 10:2 FTOH at MBO in 2006 was 1.0 to 5.0 to 2.5. The relative order of these atmospheric residence times may explain the observed enhancement of 8:2 FTOH and 10:2 FTOH (relative to 6:2 FTOH) at MBO compared to North American indoor air (FTOH average ratio of 1.0 to 2.0 to 1.0). FTOH concentrations in western U.S. air masses were positively correlated (p < 0.05) with gas-phase polycyclic aromatic hydrocarbon and polychlorinated biphenyl concentrations and negatively correlated (p < 0.05) with agricultural pesticide concentrations. In comparison to western U.S. air masses, trans-Pacific air masses did not contain elevated concentrations of these compounds, whereas lower boundary layer air masses that passed over urban areas of the western U.S. did. This suggests that semivolatile FOCs are emitted from urban areas in the western U.S.  相似文献   

3.
Perfluorinated chemicals in the arctic atmosphere   总被引:3,自引:0,他引:3  
Twenty high-volume air samples were collected during a crossing of the North Atlantic and Canadian Archipelago in July 2005 to investigate air concentrations of fluorotelomer alcohols (FTOHs) and perfluoalkyl sulfonamido ethanols (PFASs). These commercial chemicals are widely used as surface treatments and are believed to be precursors for perfluorocarboxylic acids (PFCAs) and perfluorooctane sulfonate (PFOS) that accumulate in humans and biota, including those from remote arctic regions. The highest concentrations (sum of gas- and particle-phase) of FTOHs were for 8:2 FTOH (perfluoroctyl ethanol) (5.8-26 pg/m(3)), followed by 10:2 FTOH (perfluorodecyl ethanol) (1.9-17 pg/ m(3)) and 6:2 FTOH (perfluorohexyl ethanol) [BDL (below detection limit) to 6.0 pg/m(3)]. For the PFASs, MeFOSE (N-methyl perfluorooctane sulfonamido ethanol) was dominant and ranged from 2.6 to 31 pg/m(3); EtFOSE (N-ethyl perfluorooctane sulfonamido ethanol) ranged from BDL to 8.9 pg/m(3) and MeFOSEA (N-methyl perfluorooctane sulfonamide ethylacrylate) was BDL in all samples. Air parcel back-trajectories showed that the sampled air was largely representative of the arctic air mass. Air concentrations of target compounds were of the same order of magnitude as reported air concentrations in source regions. For instance, the mean 8:2 FTOH concentration was only a factor of about 3 lower than for three urban samples that were collected in Toronto for comparison. These findings confirm model results that predictthe efficient, long-range atmospheric transport and widespread distribution of FTOHs and related compounds in the arctic region. Mean particulate percentages for FTOHs and PFASs in the cruise samples (mean temperature, 5+/-4 degrees C) were BDL for 6:2 FTOH, 23% for 8:2 FTOH, 15% for 10:2 FTOH, 32% for MeFOSE, and 22% for EtFOSE. Further, the partitioning to particles for MeFOSE and EtFOSE was significantly correlated with inverse absolute temperature, whereas the FTOHs did not show this trend. The Toronto samples (mean temperature, -1+/-1 degree C) showed similar particulate percentages for MeFOSE and EtFOSE; however, the FTOHs were substantially less particle-bound. Although the mechanism for this partitioning is not understood, the results do indicate the need to better account for particle phase transport when modeling the atmospheric fate of these chemicals.  相似文献   

4.
We aimed to investigate the role of indoor office air on exposure to polyfluorinated compounds (PFCs) among office workers. Week-long, active air sampling was conducted during the winter of 2009 in 31 offices in Boston, MA. Air samples were analyzed for fluorotelomer alcohols (FTOHs), sulfonamides (FOSAs), and sulfonamidoethanols (FOSEs). Serum was collected from each participant (n = 31) and analyzed for 12 PFCs including PFOA and PFOS. In air, FTOHs were present in the highest concentrations, particularly 8:2-FTOH (GM = 9920 pg/m(3)). FTOHs varied significantly by building with the highest levels observed in a newly constructed building. PFOA in serum was significantly correlated with air levels of 6:2-FTOH (r = 0.43), 8:2-FTOH (r = 0.60), and 10:2-FTOH (r = 0.62). Collectively, FTOHs in air significantly predicted PFOA in serum (p < 0.001) and explained approximately 36% of the variation in serum PFOA concentrations. PFOS in serum was not associated with air levels of FOSAs/FOSEs. In conclusion, FTOH concentrations in office air significantly predict serum PFOA concentrations in office workers. Variation in PFC air concentrations by building is likely due to differences in the number, type, and age of potential sources such as carpeting, furniture, and/or paint.  相似文献   

5.
Neutral, volatile polyfluorinated alkyl substances (PFAS) were measured in environmental air samples at two different sites in Northern Germany in spring 2005. The sampling locations were chosen to cover a metropolitan and a rural site, the Hamburg city center, and Waldhof, a background monitoring site. An optimized and validated analytical protocol was used to analyze two sets of parallel high-volume air samples. For both sampling locations as well as for individual samples, field blanks were taken to monitor possible background contamination. Gas chromatography coupled to mass spectrometry using positive chemical ionization (GC/ PCI-MS) was used for quantitative analyses. This article describes the first air concentration data of volatile PFAS outside North America reported in the peer-reviewed literature. The wide distribution of fluorotelomer alcohols (FTOHs), fluorinated sulfonamides, and sulfonamidoethanols (FOSAs/FOSEs) in German environmental air is presented. Furthermore, two volatile PFAS, i.e., N-methyl fluorooctane sulfonamide (NMeFOSA) and 4:2 FTOH, were determined for the first time in environmental air. Minimum-maximum sigmaFTOH concentrations of 64-311 pg/m3 (remote) up to 150-546 pg/m3 (urban) and minimum-maximum sigmaFOSA + FOSE concentrations between 12 and 54 pg/m3 (remote) and 29 and 151 pg/m3 (urban) were determined. 8:2 FTOH and 6:2 FTOH were found to be the predominant POPs determined in Waldhof so far. Blank contamination was found to be negligible. A significant correlation was found with the ambient temperature for the partitioning of airborne FOSEs between the gaseous and particulate phase (R = 0.853), whereas FTOHs and FOSAs were almost exclusively found in the gaseous phase. Furthermore, highest airborne PFAS concentrations were determined at relatively high ambient temperatures. Correlation coefficients (R) for sigmaFTOH and sigmaFOSA + FOSE concentrations with temperature were 0.954 and 0.968, respectively. Finally, the PFAS concentrations determined in this study are set into context with levels of "classical" persistent organic pollutants (POPs) in the same region and PFAS data available for North America.  相似文献   

6.
Polyfluoroalkyl compounds (PFCs) were determined in air around a wastewater treatment plant (WWTP) and two landfill sites using sorbent-impregnated polyurethane foam (SIP) disk passive air samplers in summer 2009. The samples were analyzed for five PFC classes (i.e., fluorotelomer alcohols (FTOHs), perfluorooctane sulfonamides (FOSAs), sulfonamidoethanols (FOSEs), perfluoroalkyl sulfonic acids (PFSAs), and perfluoroalkyl carboxylic acids (PFCAs)) to investigate their concentration in air, composition and emissions to the atmosphere. ∑PFC concentrations in air were 3-15 times higher within the WWTP (2280-24?040 pg/m(3)) and 5-30 times higher at the landfill sites (2780-26?430 pg/m(3)) compared to the reference sites (597-1600 pg/m3). Variations in the PFC pattern were observed between the WWTP and landfill sites and even within the WWTP site. For example, FTOHs were the predominant PFC class in air for all WWTP and landfill sites, with 6:2 FTOH as the dominant compound at the WWTP (895-12?290 pg/m(3)) and 8:2 FTOH dominating at the landfill sites (1290-17?380 pg/m(3)). Furthermore, perfluorooctane sulfonic acid (PFOS) was dominant within the WWTP (43-171 pg/m(3)), followed by perfluorobutanoic acid (PFBA) (55-116 pg/m(3)), while PFBA was dominant at the landfill sites (101-102 pg/m(3)). It is also noteworthy that the PFCA concentrations decreased with increasing chain length and that the emissions for the even chain length PFCAs outweighed emissions for the odd chain length compounds. Furthermore, highly elevated PFC concentrations were found near the aeration tanks compared to the other tanks (i.e., primary and secondary clarifier) and likely associated with increased volatilization during aeration that may be further enhanced through aqueous aerosol-mediated transport. ∑PFC yearly emissions estimated using a simplified dispersion model were 2560 g/year for the WWTP, 99 g/year for landfill site 1, and 1000 g/year for landfill site 2. These results highlight the important role of WWTPs and landfills as emission sources of PFCs to the atmosphere.  相似文献   

7.
Interest in the environmental fate of fluorotelomer alcohols (FTOHs) has spurred efforts to understand their equilibrium partitioning behavior. Experimentally determined partition coefficients for FTOHs between soil/water and air/water have been reported, but direct measurements of partition coefficients for dissolved organic carbon (DOC)/water (K(doc)) and octanol/ water(K(ow)) have been lacking. Here we measured the partitioning of 8:2 and 6:2 FTOH between one or more types of DOC and water using enhanced solubility or dialysis bag techniques, and also quantified K(ow) values for 4:2 to 8:2 FTOH using a batch equilibration method. The range in measured log K(doc) values for 8:2 FTOH using the enhanced solubility technique with DOC derived from two soils, two biosolids, and three reference humic acids is 2.00-3.97 with the lowest values obtained for the biosolids and an average across all other DOC sources (biosolid DOC excluded) of 3.54 +/- 0.29. For 6:2 FTOH and Aldrich humic acid, a log K(doc) value of 1.96 +/- 0.45 was measured using the dialysis technique. These average values are approximately 1 to 2 log units lower than previously indirectly estimated K(doc) values. Overall, the affinity for DOC tends to be slightly lower than that for particulate soil organic carbon. Measured log K(ow) values for 4:2 (3.30 +/- 0.04), 6:2 (4.54 +/- 0.01), and 8:2 FTOH (5.58 +/- 0.06) were in good agreement with previously reported estimates. Using relationships between experimentally measured partition coefficients and C-atom chain length, we estimated K(doc) and K(ow) values for shorter and longer chain FTOHs, respectively, that we were unable to measure experimentally.  相似文献   

8.
Whereas the pervasive and abundant presence of perfluorinated carboxylic acids (PFCAs) in the Arctic marine food chain is clearly established, their origin and transport pathway into the Arctic Ocean are not. Either the atmospheric oxidation of volatile precursor compounds, such as the fluorotelomer alcohols (FTOHs), or the long-range oceanic transport of directly emitted PFCAs is seen as contributing the bulk of the PFCA input to the Arctic. Here simulations with the zonally averaged global fate and transport model Globo-POP, in combination with historical emission estimates for FTOHs and perfluorooctanoic acid (PFOA), are used to evaluate the relative efficiency and importance of the two transport pathways. Estimates of the emission-independent Arctic Contamination Potential reveal that the oceanic transport of directly emitted PFCAs is more than 10-fold more efficient than the atmospheric degradation of FTOHs in delivering PFCAs to the Arctic, mostly because of the low yield of the reaction. The cumulative historic emissions of FTOHs are lower than those estimated for PFOA alone by a factor of 2-3, further limiting the contribution that precursor oxidation makes to the total PFCAs load in the Arctic Ocean. Accordingly, when fed only with FTOH emissions, the model predicts FTOH air concentrations in agreement with the reported measurements, but yields Arctic seawater concentrations for the PFOA that are 2 orders of magnitude too low. Whereas ocean transport is thus very likely the dominant pathway of PFOA into the Arctic Ocean, the major transport route of longer chain PFCAs depends on the size of their direct emissions relative to those of 10:2 FTOH. The predicted time course of Arctic seawater concentrations is very similar for directly emitted and atmospherically generated PFCAs, implying that neither past doubling times of PFCA concentrations in Arctic marine mammals nor any future time trends are likely to resolve the question of the dominant source of PFCAs.  相似文献   

9.
Neutral perfluorinated alkyl substances (PFASs), which are thought to be volatile precursors of environmentally ubiquitous perfluorocarboxylates (PFCAs) and perfluorooctanesulfonate (PFOS), were quantified in XAD-2 resin based passive air samplers deployed along an altitudinal transect from 800 to 2740 m above sea level (asl) in Western Canada (based at N51degrees 20' W117degrees 00') over the spring and summer seasons of 2004. The amounts of fluorotelomer alcohols (FTOHs) and perfluorinated sulfonamido alcohols (FOSEs) sequestered in the samplers increased with altitude, being lowest at an elevation of 1300 m asl and highest at either the 2340 or the 2740 m asl sites. A variety of potential reasons for these gradients are discussed, including changes in sampler uptake kinetics and phase capacity caused by changes in atmospheric pressure,temperature, and wind speed. Vapor phase concentrations were estimated to range from 3.7 to 19 pg m(-3) for perfluorinated sulfonamides (FOSAs) and from below detection limits (25 pg m(-3)) to 88 pg m(-3) for FOSEs. Over a similar altitudinal range (800-2350 m asl), 9 L lake water samples were collected in stainless steel cans, extracted with solid phase extraction columns, and analyzed for PFCAs and PFOS. Aqueous concentrations in lake water, ranging from 0.07 to 1.0 ng L(-1) for single PFCAs and from 0.04 to 0.1 ng L(-1) for PFOS, were more constant with altitude and were not correlated with the amount of the precursor compounds in the atmosphere. The relative abundance of FTOHs in air and PFCAs in water supports atmospheric FTOH degradation as the source of PFCAs in the mountain lakes.  相似文献   

10.
Neutral, volatile polyfluorinated alkyl substances (PFAS) were determined in high-volume air samples collected onboard the German research vessel Polarstern during cruise ANTXXIII-1 between Bremerhaven, Germany (53 degrees N) and Capetown, Republic of South Africa (33 degrees S) in fall 2005. An optimized and validated analytical protocol was used for the determination of several fluorotelomer alcohols (FTOHs) as well as N-alkylated fluorooctane sulfonamides and sulfonamidoethanols (FOSAs/FOSEs). Quantitative analyses were done by gas chromatography-mass spectrometry. This study provides the first concentration data of airborne PFAS from the Southern Hemisphere. Results indicate a strongly decreasing concentration gradient from the European continent toward less industrialized regions. The study confirms that airborne PFAS are mainly restricted to the Northern Hemisphere with a maximum concentration of 190 pg/m3 (8:2 FTOH) in the first sample collected in the channel between the European mainland and the UK. However, south of the equator, trace amounts of several FTOHs and FOSAs with a maximum of 14 pg/m3 (8:2 FTOH) could still be detected. Furthermore, a selection of ionic PFAS including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) were determined in the particulate phase of high-volume air samples by liquid chromatography-mass spectrometry. Levels of ionic PFAS were almost 2 orders of magnitude lower than those of neutral PFAS, with maximum concentrations in the first sample of 2.5 pg/m3 (PFOS) and 2.0 pg/m3 (PFOA).  相似文献   

11.
There is increasing scientific interest to understand the environmental fate of fluorotelomer alcohols (FTOHs) and fluorotelomer-based products which may break down to FTOHs. Both are expected to enter aqueous waste streams, which would be processed in a wastewater treatment plant and therein subject to microbial biodegradation. We investigated the biodegradation of 3-14C, 1H,1H,2H,2H-perfluorodecanol [CF3(CF2)6(14)CF2CH2CH2OH, 14C-8-2 FTOH] in mixed bacterial culture and activated sludge. 14CO2 and 14C-organic volatiles in the headspace of the sealed bottles and bottles with continuous air flow were analyzed up to 4 months. After sample extraction with acetonitrile, 14C-labeled biotransformation products (metabolites) were quantified by LC/ARC (on-line liquid chromatography/ accurate radioisotope counting) and identified by quadrupole time-of-flight (Q-TOF) mass spectrometry and GC/MSD (mass selective detector). Three metabolites not yet reported in the literature have been identified as CF3(CF2)6(14)CHOHCH3 (7-2 sFTOH), CF3(CF2)6(14)CH=CHCOOH (7-3 unsaturated acid or 7-3 u acid), and CF3(CF2)6(14)CH=CHCONH2 (7-3 u amide) along with five previously reported metabolites [CF3(CF2)6(14)CF2CH2CHO (8-2 FTAL), CF3(CF2)6 (14)CF2CH2COOH (8-2 acid), CF3(CF2)6(14)CF=CHCOOH (8-2 u acid), CF3(CF2)6(14)CH2CH2COOH (7-3 acid), and CF3(CF2)6(14)COOH (PFOA)]. No CF3(CF2)6(14)CF2COOH (14C-PFNA) was observed, indicating that alpha-oxidation does not take place. It was found that strong adsorption to the activated sludge and subsequent transformation, even under continuous air flow, greatly reduced partitioning of 8-2 FTOH or any transformation products to air. CF3(CF2)4COOH (PFHA; perfluorohexanoic acid) was observed and increased in mixed bacterial culture over 28 days and accounted for about 1% of the initial 14C-8-2 FTOH concentration from day 28 to day 90. 14CO2 accounted for 1% of initial 14C in activated sludge with continuous air flow at day 1 and increased over time. In closed bottles, 14CO2 in the headspace of activated sludge medium increased to 12% of the available 14C over 135 days with periodic addition of ethanol, as compared to 3% when no additional ethanol was added. These results show that replenishment of organic carbon enhanced microbial mineralization of multiple--CF2--groups in the fluorocarbon chain of 14C-8-2 FTOH. At day 90 the net increase of fluoride ion in the mixed bacterial culture was 93 microg L(-1), equivalent to 12% of total mineralization (destruction) of the 14C-8-2 FTOH. These results demonstrate that perfluorinated carbon bonds of 14C-8-2 FTOH are defluorinated and mineralized by microorganisms under conditions which may occur in a wastewater treatment plant, forming shorter fluorinated carbon metabolites.  相似文献   

12.
Fluoropolymer dispersions are used for coating certain cookware products and food-contact packaging to impart oil and water repellency. Since salts of perfluorooctanoic acid (PFOA) are used as a processing aid in the manufacture of many fluoropolymers, it is necessary to determine if these compounds are still present as residuals after the process used to coat nonstick cookware or packaging, and could be released during typical cooking conditions. In this study, we identified and measured perfluoroalkyl carboxylates (PFCAs), particularly PFOA, and fluorotelomer alcohols (FTOHs; 6:2 FTOH and 8:2 FTOH), released from nonstick cookware into the gas phase under normal cooking temperatures (179 to 233 degrees C surface temperature). PFOA was released into the gas phase at 7-337 ng (11-503 pg/cm2) per pan from four brands of nonstick frying pans. 6:2 FTOH and 8:2 FTOH were found in the gas phase of four brands of frying pans, and the sources of FTOHs released from nonstick cookware are under investigation. We observed a significant decrease in gas-phase PFOA following repeated use of one brand of pan, whereas the other brand did not show a significant reduction in PFOA release following multiple uses. PFOA was found at >5 ng during the fourth use of both brands of pans. FTOHs were not found after the second use of either brand of pans. PFOA was found at 5-34 ng in the vapors produced from a prepacked microwave popcorn bag. PFOA was not found in the vapors produced from plain white corn kernels popped in a polypropylene container. 6:2 FTOH and 8:2 FTOH were measured in the vapors produced from one brand of prepacked microwave popcorn at 223 + 37 ng and 258 +/- 36 ng per bag, respectively, but not measured at >20 ng (LOQ) in the other two brands. On the packaging surface of one brand of microwave popcorn several PFCAs, including C5-C12, 6:2 FTOH, and 8:2 FTOH, were found at concentrations in the order of 0.5-6.0 ng/cm2. This study suggests that residual PFOA is not completely removed during the fabrication process of the nonstick coating for cookware. They remain as residuals on the surface and may be off-gassed when heated at normal cooking temperatures.  相似文献   

13.
Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are widely detected in human blood and serum and are of concern due to their potential toxicity. This study investigated the indoor sources of these compounds and their neutral precursors through a survey of 152 homes in Vancouver, Canada. Samples were collected of indoor air, outdoor air, indoor dust, and clothes dryer lint and analyzed for neutral [i.e., fluorotelomer alcohols (FTOHs), perfluorooctane sulfonamide (FOSA), and perfluorooctane sulfonamidoethanol (FOSE)] and ionic [i.e., PFOS and perfluoroalkyl carboxylates (PFCAs)] poly- and perfluorinated compounds (PFCs). Indoor air was dominated by 8:2 FTOH with a geometric mean concentration (pg/m(3)) of 2900. Among the FOSAs and FOSEs, MeFOSE exhibited the highest air concentration with a geometric mean of 380 pg/m(3). PFOA was the major ionic PFC and was detected in all indoor air samples with a geometric mean of 28 pg/m(3), whereas PFOS was below the detection limit. The results for the ionic PFCs in indoor air are the first for North America. The pattern of the neutral PFCs in house dust was also dominated by 8:2 FTOH, with a geometric mean of 88 ng/g. Dusts were enriched (relative to air) with sulfonamidoethanol (FOSE) which comprised ~22% of the total neutral PFC content compared to only ~3% in air. PFOS and PFOA were the most prominent compounds detected in dust samples. Levels of neutral PFCs in clothes dryer lint were an order of magnitude lower compared to house dust. Human exposure estimates to PFCs for adults and children showed that inhalation was the main exposure route for neutral and ionic PFCs in adults. For toddlers, ingestion of PFCs via dust was more relevant and was on the order of a few mg/day. Results from this study contribute to our understanding of exposure pathways of PFCs to humans. This will facilitate investigations of related health effects and human monitoring data.  相似文献   

14.
Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids   总被引:2,自引:0,他引:2  
The widespread detection of environmentally persistent perfluorinated acids (PFCAs) such as perfluorooctanoic acid (PFOA) and its longer chained homologues (C9>C15) in biota has instigated a need to identify potential sources. It has recently been suggested that fluorinated telomer alcohols (FTOHs) are probable precursor compounds that may undergo transformation reactions in the environment leading to the formation of these potentially toxic and bioaccumulative PFCAs. This study examined the aerobic biodegradation of the 8:2 telomer alcohol (8:2 FTOH, CF3(CF2)7CH2CH2OH) using a mixed microbial system. The initial measured half-life of the 8:2 FTOH was approximately 0.2 days mg(-1) of initial biomass protein. The degradation of the telomer alcohol was monitored using a gas chromatograph equipped with an electron capture detector (GC/ECD). Volatile metabolites were identified using gas chromatography/ mass spectrometry (GC/MS), and nonvolatile metabolites were identified and quantified using liquid chromatography/ tandem mass spectrometry (LC/MS/MS). Telomer acids (CF3(CF2)7CH2COOH; CF3(CF2)6CFCHCOOH) and PFOA were identified as metabolites during the degradation, the unsaturated telomer acid being the predominant metabolite measured. The overall mechanism involves the oxidation of the 8:2 FTOH to the telomer acid via the transient telomer aldehyde. The telomer acid via a beta-oxidation mechanism was furthertransformed, leading to the unsaturated acid and ultimately producing the highly stable PFOA. Telomer alcohols were demonstrated to be potential sources of PFCAs as a consequence of biotic degradation. Biological transformation may be a major degradation pathway for fluorinated telomer alcohols in aquatic systems.  相似文献   

15.
Perfluorinated compounds in house dust from Ohio and North Carolina, USA   总被引:2,自引:0,他引:2  
The perfluoroalkyl acids (PFAAs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), have come under increasing scrutiny due to their persistence, global distribution, and toxicity. Given that their human exposure routes remain poorly characterized, the potential role of house dust needs to be more completely evaluated. In this study, new methods for the analysis of 10 PFAAs and three fluorinated telomer alcohols (FTOHs) were developed for dust samples collected from homes (n = 102) and day care centers (n = 10) in Ohio and North Carolina in 2000-2001. FTOHs were measured by GC/ MS and PFAAs were analyzed by LC-MS/MS. PFOS and PFOA were the most prominent compounds detected, occurring in over 95% of the samples at median concentrations of 201 and 142 ng/g of dust, respectively. Maximal concentrations of PFOS were 12 100 ng/g (95th percentile, 2240 ng/g), PFOA 1960 ng/g (95th percentile, 1200 ng/g), and perfluorohexanesulfonate (PFHS) 35 700 ng/g (95th percentile, 2300 ng/g). The 8:2 FTOH, which is volatile and can degrade to PFOA, had a maximum concentration of 1660 ng/g dust (95th percentile, 669 ng/g). These results indicate that perfluorinated compounds are present in house dust at levels that may represent an important pathway for human exposure.  相似文献   

16.
Soil samples were collected for fluorotelomer alcohol (FTOH) analyses from six fields to which sludge had been applied and one "background" field that had not received sludge. Ten analytes in soil extracts were quantified using GC/MS. Sludge-applied fields had surface soil FTOH concentrations exceeding levels found in the background field. For 8:2nFTOH, which can degrade to perfluorooctanoic acid, impacted surface-soils ranged from 5 to 73 ng/g dry weight, clearly exceeding the background field in which 8:2nFTOH was not detected. The highest [FTOH] generally was 10:2nFTOH, which had concentrations of <5.6 to 166 ng/g. For the first time, we document the persistence of straight-chained primary FTOHs (n-FTOHs) and branch-chained secondary FTOHs (sec-FTOHs), which are transformation products of n-FTOHs, in field soils for at least five years after sludge application. Ratios of sec-FTOHs to n-FTOHs were highest for 7:2sFTOH/8:2nFTOH (~50%) and decreased with increasing chain length to a minimum for the longest-chained analytes, 13:2sFTOH/14:2nFTOH (~10%). Disappearance half-lives for FTOHs, calculated with these data, ranged from 0.85 to 1.8 years. These analytical results show that the practice of sludge application to land is a pathway for the introduction of FTOHs and, accordingly, their transformation products, perfluorocarboxylic acids, into the environment.  相似文献   

17.
A high spatial and temporal resolution atmospheric model is used to evaluate the potential contribution of fluorotelomer alcohol (FTOH) and perfluorocarboxylate (PFCA) emissions associated with the manufacture, use, and disposal of DuPont fluorotelomer-based products in North America to air concentrations of FTOH, perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) in North America and the Canadian Arctic. A bottom-up emission inventory for PFCAs and FTOHs was developed from sales and product composition data. A detailed FTOH atmospheric degradation mechanism was developed to simulate FTOH degradation to PFCAs and model atmospheric transport of PFCAs and FTOHs. Modeled PFCA yields from FTOH degradation agree with experimental smog-chamber results supporting the degradation mechanism used. Estimated PFCA and FTOH air concentrations and PFCA deposition fluxes are compared to monitoring data and previous global modeling. Predicted FTOH air concentrations are generally in agreement with available monitoring data. Overall emissions from the global fluorotelomer industry are estimated to contribute approximately 1-2% of the PFCAs in North American rainfall, consistent with previous global emissions estimates. Emission calculations and modeling results indicate that atmospheric inputs of PFCAs in North America from fluorotelomer-based products will decline by an order of magnitude in the near future as a result of current industry commitments to reduce manufacturing emissions and lower the residual fluorotelomer alcohol raw material and trace PFCA product content.  相似文献   

18.
Atmospheric deposition of perfluorinated carboxylic acids (PFCAs) in remote regions might arise from transport and degradation of precursors (e.g., perfluorooctanesulfonyl fluoride (PFOSF)-based products or fluorotelomer alcohols (FTOHs)) or direct transport (e.g., PFCAs in the vapor phase or on particles). To probe the dominant atmospheric source of PFCAs, historical trends in environmental FTOH, PFOSF, and direct perfluorooctanoate (PFOA) emissions were compared to the flux of PFCAs (sum of C7-C13 perfluoroalkyl chain lengths) and PFCA isomer signatures in dated sediment cores from two remote alpine lakes in the Canadian Rocky Mountains. Contributions from PFOSF-based substances and direct transport of PFOA were ruled to be minimal because no branched isomers were detected in either core and temporal trends for direct emission of PFOA did not match the flux measurements. PFCA flux to Lake Opabin sediment agreed well with reported FTOH emissions, including a peak in mid-2003 and subsequent decline. In Lake Oesa, agreement between PFCA flux and FTOH emissions was also good up to 2004, but a subsequent decline was only detected for some PFCA congeners through 2008, while others continued to increase. Overall, both the isomer profiles and the temporal trend data suggest that FTOH oxidation is the dominant atmospheric source of PFCAs to these high alpine lakes. The efficacy of recent industry phase-out initiatives was difficult to assess due to the divergent temporal trends in samples after 2003; thus, continued monitoring is suggested at remote sites such as these.  相似文献   

19.
Polyfluorinated telomer alcohols and sulfonamides are classes of compounds recently identified as precursor molecules to the perfluorinated acids detected in the environment. Despite the detection and quantification of these volatile compounds in the atmosphere, their sources remain unknown. Both classes of compounds are used in the synthesis of various fluorosurfactants and incorporated in polymeric materials used extensively in the carpet, textile, and paper industries. This study has identified the presence of residual unbound fluoro telomer alcohols (FTOHs) in varying chain lengths (C6-C14) in several commercially available and industrially applied polymeric and surfactant materials. NMeFOSE, a perfluoroalkyl sulfonamido alcohol, was also detected in a commercially available carpet protector product. A method was developed to remove these residual compounds from polymeric and surfactant materials by dispersion in water and stripping of the volatiles using a constant flow of air and trapping on XAD resin. Using gas chromatography mass spectrometry analysis, it was determined that the fluorinated materials examined consist of 0.04-3.8% residual alcohols on a fluoro alcohol to dry mass basis. These values indicate that residual alcohols, left unreacted and unbound from the manufacturing process of fluorinated polymers and surfactants, could be a significant source of the polyfluorinated telomer alcohols and sulfonamides released into the environment. This study suggests that elimination or reduction of these residual alcohols from all marketed fluorinated polymers and fluorosurfactants is key in reducing the prevalence of perfluorinated acids formed in the environment.  相似文献   

20.
Perfluorinated acids are detected in human blood world-wide, with increased levels observed in industrialized areas. The origin of this contamination is not well understood. A possible route of exposure, which has received little attention experimentally, is indirect exposure to perfluorinated acids through ingestion of chemicals applied to food contact paper packaging. The current investigation quantified the load of perfluorinated acids to Sprague-Dawley rats upon exposure to polyfluoroalkyl phosphate surfactants (PAPS), nonpolymeric fluorinated surfactants approved for application to food contact paper products. The animals were administered a single dose at 200 mg/kg by oral gavage of 8:2 fluorotelomer alcohol (8:2 FTOH) mono-phosphate (8:2 monoPAPS), or the corresponding di-phosphate (8:2 diPAPS), with blood taken over 15 days post-dosing to monitor uptake, biotransformation, and elimination. Upon completion of the time-course study the animals were redosed using an identical dosing procedure, with sacrifice and necropsy 24 h after the second dosing. Increased levels of perfluorooctanoic acid (PFOA), along with both 8:2 PAPS congeners, were observed in the blood of the dosed animals. In the 8:2 monoPAPS-dosed animals, 8:2 monoPAPS and PFOA blood concentrations peaked at 7900 +/- 1200 ng/g and 34 +/- 4 ng/g respectively. In the 8:2 diPAPS-dosed animals, 8:2 diPAPS peaked in concentration at 32 +/- 6 ng/g, and 8:2 monoPAPS and PFOA peaked at 900 +/- 200 ng/g and 3.8 +/- 0.3 ng/g, respectively. Several established polyfluorinated metabolites previously identified in 8:2 FTOH metabolism studies were also observed in the dosed animals. Consistent with other fluorinated contaminants, the tissue distributions showed increased levels of both PFOA and the 8:2 PAPS congeners in the liver relative to the other tissues measured. Previous investigations have found that PAPS can migrate into food from paper packaging. Here we link ingestion of PAPS with in vivo production of perfluorinated acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号