首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The zebrafish locus one-eyed pinhead (oep) is essential for the formation of anterior axial mesoderm, endoderm and ventral neuroectoderm. At the beginning of gastrulation anterior axial mesoderm cells form the prechordal plate and express goosecoid (gsc) in wild-type embryos. In oep mutants the prechordal plate does not form and gsc expression is not maintained. Exposure to lithium, a dorsalizing agent, leads to the ectopic induction and maintenance of gsc expression in wild-type embryos. Lithium treatment of oep mutants still leads to ectopic gsc induction but not maintenance, suggesting that oep acts downstream of inducers of dorsal mesoderm. In genetic mosaics, wild-type cells are capable of forming anterior axial mesoderm in oep embryos, suggesting that oep is required in prospective anterior axial mesoderm cells before gastrulation. The oep gene is also essential for endoderm formation and the early development of ventral neuroectoderm, including the floor plate. The loss of endoderm is already manifest during gastrulation by the absence of axial-expressing cells in the hypoblast of oep mutants. These findings suggest that oep is also required in lateral and ventral regions of the gastrula margin. The sonic hedgehog (shh).gene is expressed in the notochord of oep animals. Therefore, the impaired floor plate development in oep mutants is not caused by the absence of the floor plate inducer shh. This suggests that oep is required downstream or in parallel to shh signaling. The ventral region of the forebrain is also absent in oep mutants, leading to severe cyclopia. In contrast, anterior-posterior brain patterning appears largely unaffected, suggesting that underlying prechordal plate is not required for anterior-posterior pattern formation but might be involved in dorsoventral brain patterning. To test if oep has a wider, partially redundant role, we constructed double mutants with two other zebrafish loci essential for patterning during gastrulation. Double mutants with floating head, the zebrafish Xnot homologue, display enhanced floor plate and adaxial muscle phenotypes. Double mutants with no tail (ntl), the zebrafish homologue of the mouse Brachyury locus, display severe defects in midline and mesoderm formation including absence of most of the somitic mesoderm. These results reveal a redundant function of oep and ntl in mesoderm formation. Our data suggest that both oep and ntl act in the blastoderm margin to specify mesendodermal cell fates.  相似文献   

2.
Zebrafish cyclops (cyc) mutations cause deficiencies in the dorsal mesendoderm and ventral neural tube, leading to neural defects and cyclopia. Here we report that cyc encodes a transforming growth factor-beta (TGF-beta)-related intercellular signalling molecule that is similar to mouse nodal. cyc is expressed in dorsal mesendoderm at gastrulation and in the prechordal plate until early somitogenesis. Expression reappears transiently in the left lateral-plate mesoderm, and in an unprecedented asymmetric pattern in the left forebrain. Injection of cyc RNA non-autonomously restores sonic hedgehog-expressing cells of the ventral brain and floorplate that are absent in cyc mutants, whereas inducing activities are abolished by cyc, a mutation of a conserved cysteine in the mature ligand. Our results indicate that cyc provides an essential non-cell-autonomous signal at gastrulation, leading to induction of the floorplate and ventral brain.  相似文献   

3.
Different types of endoderm, including primitive, definitive and mesendoderm, play a role in the induction and patterning of the vertebrate head. We have studied the formation of the anterior neural plate in chick embryos using the homeobox gene GANF as a marker. GANF is first expressed after mesendoderm ingression from Hensen's node. We found that, after transplantation, neither the avian hypoblast nor the anterior definitive endoderm is capable of GANF induction, whereas the mesendoderm (young head process, prechordal plate) exhibits a strong inductive potential. GANF induction cannot be separated from the formation of a proper neural plate, which requires an intact lower layer and the presence of the prechordal mesendoderm. It is inhibited by BMP4 and promoted by the presence of the BMP antagonist Noggin. In order to investigate the inductive potential of the mammalian visceral endoderm, we used rabbit embryos which, in contrast to mouse embryos, allow the morphological recognition of the prospective anterior pole in the living, pre-primitive-streak embryo. The anterior visceral endoderm from such rabbit embryos induced neuralization and independent, ectopic GANF expression domains in the area pellucida or the area opaca of chick hosts. Thus, the signals for head induction reside in the anterior visceral endoderm of mammals whereas, in birds and amphibia, they reside in the prechordal mesendoderm, indicating a heterochronic shift of the head inductive capacity during the evolution of mammalia.  相似文献   

4.
We report an analysis of forebrain determination and patterning in the zebrafish Danio rerio. In order to study these events, we isolated zebrafish homologs of two neural markers, odd-paired-like (opl), which encodes a zinc finger protein, and fkh5, which encodes a forkhead domain protein. At mid-gastrula, expression of these genes defines a very early pattern in the presumptive neurectoderm, with opl later expressed in the telencephalon, and fkh5 in the diencephalon and more posterior neurectoderm. Using in vitro explant assays, we show that forebrain induction has occurred even earlier, by the onset of gastrulation (shield stage). Signaling from the early gastrula shield, previously shown to be an organizing center, is sufficient for activation of opl expression in vitro. In order to determine whether the organizer is required for opl regulation, we removed from late blastula stage embryos either the presumptive prechordal plate, marked by goosecoid (gsc) expression, or the entire organizer, marked by chordin (chd) expression. opl was correctly expressed after removal of the presumptive prechordal plate and consistently, opl was correctly expressed in one-eyed pinhead (oep) mutant embryos, where the prechordal plate fails to form. However, after removal of the entire organizer, no opl expression was observed, indicating that this region is crucial for forebrain induction. We further show that continued organizer function is required for forebrain induction, since beads of BMP4, which promotes ventral fates, also prevented opl expression when implanted during gastrulation. Our data show that forebrain specification begins early during gastrulation, and that a wide area of dorsal mesendoderm is required for its patterning.  相似文献   

5.
6.
Embryonic patterning in vertebrates is dependent upon the balance of inductive signals and their specific antagonists. We show that Noggin, which encodes a bone morphogenetic protein (BMP) antagonist expressed in the node, notochord, and dorsal somite, is required for normal mouse development. Although Noggin has been implicated in neural induction, examination of null mutants in the mouse indicates that Noggin is not essential for this process. However, Noggin is required for subsequent growth and patterning of the neural tube. Early BMP-dependent dorsal cell fates, the roof plate and neural crest, form in the absence of Noggin. However, there is a progressive loss of early, Sonic hedgehog (Shh)-dependent ventral cell fates despite the normal expression of Shh in the notochord. Further, somite differentiation is deficient in both muscle and sclerotomal precursors. Addition of BMP2 or BMP4 to paraxial mesoderm explants blocks Shh-mediated induction of Pax-1, a sclerotomal marker, whereas addition of Noggin is sufficient to induce Pax-1. Noggin and Shh induce Pax-1 synergistically. Use of protein kinase A stimulators blocks Shh-mediated induction of Pax-1, but not induction by Noggin, suggesting that induction is mediated by different pathways. Together these data demonstrate that inhibition of BMP signaling by axially secreted Noggin is an important requirement for normal patterning of the vertebrate neural tube and somite.  相似文献   

7.
Ventral midline cells in the neural tube have distinct properties at different rostrocaudal levels, apparently in response to differential signalling by axial mesoderm. Floor plate cells are induced by sonic hedgehog (SHH) secreted from the notochord whereas ventral midline cells of the rostral diencephalon (RDVM cells) appear to be induced by the dual actions of SHH and bone morphogenetic protein 7 (BMP7) from prechordal mesoderm. We have examined the cellular and molecular events that govern the program of differentiation of RDVM cells under the influence of the axial mesoderm. By fate mapping, we show that prospective RDVM cells migrate rostrally within the neural plate, passing over rostral notochord before establishing register with prechordal mesoderm at stage 7. Despite the co-expression of SHH and BMP7 by rostral notochord, prospective RDVM cells appear to be specified initially as caudal ventral midline neurectodermal cells and to acquire RDVM properties only at stage 7. We provide evidence that the signalling properties of axial mesoderm over this period are regulated by the BMP antagonist, chordin. Chordin is expressed throughout the axial mesoderm as it extends, but is downregulated in prechordal mesoderm coincident with the onset of RDVM cell differentiation. Addition of chordin to conjugate explant cultures of prechordal mesoderm and neural tissue prevents the rostralization of ventral midline cells by prechordal mesoderm. Chordin may thus act to refine the patterning of the ventral midline along the rostrocaudal axis.  相似文献   

8.
9.
The inner ear forms by a series of folds within an ectodermal placode. Previous work has shown that changes in surrounding tissues play a more prominent role in invagination than changes in the cytoskeleton of the primordium. Interference with the integrity of the extracellular matrix causes abnormalities in the folding process, primarily related to abnormalities in the paraxial mesoderm which lies ventral to the placode. In this study, the role of the neural cell adhesion molecule (N-CAM) was investigated, based on the expression of this component of the plasmalemma at the time the otic placode begins to fold. Microinjection of blocking antibodies to N-CAM into the paraxial mesoderm adjacent to the otic placode resulted in two major classes of defects, detachment of the primordium from the neural tube and interference with formation of the folds. Microinjection of saline, control immunoglobulin, or antibody against cytoplasmic domain had no effect. These defects correlate with the pattern of N-CAM expression at the time of injection, along the neural ectoderm and otic epithelium and the mesenchyme cells ventral to the primordium. It seems likely that N-CAM is playing a role in heterophilic associations rather than through the homophilic binding domain during formation of the otic vesicle.  相似文献   

10.
Recent studies implicate ventrally derived signals, in addition to dorsal ones emanating from the organizer, in patterning the vertebrate gastrula. We have identified five overlapping deficiencies that uncover the zebrafish cerebum locus and dramatically alter dorsal-ventral polarity at gastrulation. Consistent with the properties of experimentally ventralized amphibian embryos, cerebum mutants exhibit reduced neurectodermal gene expression domains and an increase in derivatives of ventral mesoderm. Structures derived from paraxial and lateral mesoderm also are reduced; however, dorsal axial mesodermal derivatives, such as the hatching gland and notochord, are largely spared. The pleiotropic action of cerebum deficiencies, and the differential response of affected tissues, suggest that the cerebum gene may normally function as an inhibitor of ventralizing signals, a function previously ascribed to Noggin and Chordin in Xenopus. Analysis of the cerebum phenotype provides genetic evidence for the existence of ventralizing signals in the zebrafish gastrula and for antagonists of those signals.  相似文献   

11.
12.
The organizer of the amphibian gastrula provides the neurectoderm with both neuralizing and posteriorizing (transforming) signals. In zebrafish, transplantations show that a spatially distinct transformer signal emanates from tissues other than the organizer. Cells of the germring (nonaxial mesendoderm) posteriorized forebrain progenitors when grafted nearby, resulting in an ectopic hindbrain-like structure; in contrast, cells of the organizer (axial mesendoderm) caused no posterior transformation. Local application of basic fibroblast growth factor, a candidate transformer in Xenopus, caused malformation but not hindbrain transformation in the forebrain. Thus, the zebrafish gastrula may integrate spatially distinct signals from the organizer and the germring to pattern the neural axis.  相似文献   

13.
The genetic pathways underlying the induction and anterior-posterior patterning of the heart are poorly understood. The recent emergence of the zebrafish model system now allows a classical genetic approach to such challenging problems in vertebrate development. Two large-scale screens for mutations affecting zebrafish embryonic development have recently been completed; among the hundreds of mutations identified were several that affect specific aspects of cardiac morphogenesis, differentiation, and function. However, very few mutations affecting induction and/or anterior-posterior patterning of the heart were identified. We hypothesize that a directed approach utilizing molecular markers to examine these particular steps of heart development will uncover additional such mutations. To test this hypothesis, we are conducting two parallel screens for mutations that affect either the induction or the anterior-posterior patterning of the zebrafish heart. As an indicator of cardiac induction, we examine expression of nkx2.5, the earliest known marker of precardiac mesoderm; to assess anterior-posterior patterning, we distinguish ventricle from atrium with antibodies that recognize different myosin heavy chain isoforms. In order to expedite the examination of a large number of mutations, we are screening the haploid progeny of mosaic F1 females. In these ongoing screens, we have identified four mutations that affect nkx2.5 expression as well as 21 that disrupt either ventricular or atrial development and thus far have recovered several of these mutations, demonstrating the value of our approach. Future analysis of these and other cardiac mutations will provide further insight into the processes of induction and anterior-posterior patterning of the heart.  相似文献   

14.
We focus here upon regulation by the notochord of myocardial cell fate in zebrafish. Myocardial precursors, defined by lineage tracing in the living embryo, are in the lateral plate mesoderm adjacent to the notochord-prechordal plate junction. Interestingly, the anterior end of the notochord corresponds to the posterior extent of the heart progenitor field, defined by this lineage analysis. This suggested that the notochord might suppress, or the prechordal plate might enhance, the cardiogenic fate. Nkx2.5 expression is, in the zebrafish embryo, closely correlated with the position of myocardial precursors, which reside adjacent to the notochord-prechordal plate junction. This expression, however, is extinguished in the region posterior to this junction, a region normally not contributing cells to the heart. Laser ablation of the notochord tip between the 4-somite and 12-somite stage causes posterior expansion of the Nkx2. 5-expressing region. The ntl mutation of the notochord is associated with posterior extension of Nkx2.5 expression. Lineage tracking, by laser activation of caged fluoresceinated dextran, confirms that, normally, lateral plate cells next to the notochord do not contribute progeny to the heart. After anterior notochord ablation, these cells are redirected to a heart cell fate. These data suggest that the anterior notochord delimits the posterior extent of the heart field by suppressing the heart cell fate.  相似文献   

15.
Nodal-related 1 (ndr1) and nodal-related 2 (ndr2) genes in zebrafish encode members of the nodal subgroup of the transforming growth factor-beta superfamily. We report the expression patterns and functional characteristics of these factors, implicating them in the establishment of dorsal-ventral polarity and left-right asymmetry. Ndr1 is expressed maternally, and ndr1 and ndr2 are expressed during blastula stage in the blastoderm margin. During gastrulation, ndr expression subdivides the shield into two domains: a small group of noninvoluting cells, the dorsal forerunner cells, express ndr1, while ndr2 RNA is found in the hypoblast layer of the shield and later in notochord, prechordal plate, and overlying anterior neurectoderm. During somitogenesis, ndr2 is expressed asymmetrically in the lateral plate as are nodal-related genes of other organisms, and in a small domain in the left diencephalon, providing the first observation of asymmetric gene expression in the embryonic forebrain. RNA injections into Xenopus animal caps showed that Ndr1 acts as a mesoderm inducer, whereas Ndr2 is an efficient neural but very inefficient mesoderm inducer. We suggest that Ndr1 has a role in mesoderm induction, while Ndr2 is involved in subsequent specification and patterning of the nervous system and establishment of laterality.  相似文献   

16.
Ventral midline cells at different rostrocaudal levels of the central nervous system exhibit distinct properties but share the ability to pattern the dorsoventral axis of the neural tube. We show here that ventral midline cells acquire distinct identities in response to the different signaling activities of underlying mesoderm. Signals from prechordal mesoderm control the differentiation of rostral diencephalic ventral midline cells, whereas notochord induces floor plate cells caudally. Sonic hedgehog (SHH) is expressed throughout axial mesoderm and is required for the induction of both rostral diencephalic ventral midline cells and floor plate. However, prechordal mesoderm also expresses BMP7 whose function is required coordinately with SHH to induce rostral diencephalic ventral midline cells. BMP7 acts directly on neural cells, modifying their response to SHH so that they differentiate into rostral diencephalic ventral midline cells rather than floor plate cells. Our results suggest a model whereby axial mesoderm both induces the differentiation of overlying neural cells and controls the rostrocaudal character of the ventral midline of the neural tube.  相似文献   

17.
Vertebrate eye development in the anterior region of the neural plate involves a series of inductive interactions dependent on the underlying prechordal plate and signals from the midline of the neural plate, including Hedgehog. The mechanisms controlling the spatiotemporal expression pattern of hedgehog genes are currently not understood. Cyclopia is observed in trilobite (tri) and knypek (kny) mutants with affected convergent extension of the embryonic axis during gastrulation. Here, we demonstrate that tri mutants show a high frequency of partial or complete cyclopia, kny mutants exhibit cyclopia infrequently, while knym119 trim209 double-mutant embryos have dramatically reduced convergent extension and are completely cyclopic. We analyzed the relationships between the convergent extension defect, the expression of hedgehog and prechordal plate genes, and the formation of cyclopia in knym119 and trim209 mutants. Our results correlate the cyclopia phenotype with the abnormal location of hh-expressing cells with respect to the optic primordium. We show that cyclopia in these mutants is not due to an incompetence of tri and kny cells to respond to Hedgehog signaling. Rather, it is a consequence of exceeding a critical distance (>40-50 micrometer) between hedgehog-expressing cells and the prospective eye field. We hypothesize that at this distance, midline cells are not in an appropriate position to physically separate the eye field and that HH and other signals do not reach the appropriate target cells. Furthermore, tri and kny have overlapping functions in establishing proper alignment of the anterior neural plate and midline cells expressing shh and twhh genes when the partitioning of the eye primordium takes place.  相似文献   

18.
An early step in the development of vertebrae, ribs, muscle, and dermis is the differentiation of the somitic mesoderm into dermomyotome dorsally and sclerotome ventrally. To analyze this process, we have developed an in vitro assay for somitic mesoderm differentiation. We show that sclerotomal markers can be induced by a diffusible factor secreted by notochord and floor plate and that heterologous cells expressing Sonic hedgehog (shh/vhh-1) mimic this effect. In contrast, expression of dermomyotomal markers can be caused by a contact-dependent signal from surface ectoderm and a diffusible signal from dorsal neural tube. Our results extend previous studies by suggesting that dorsoventral patterning of somites involves the coordinate action of multiple dorsalizing and ventralizing signals and that a diffusible form of Shh/Vhh-1 mediates sclerotome induction.  相似文献   

19.
smad genes constitute a family of nine members whose products serve as intracellular mediators of transforming growth factor beta signals. SMAD2, which is a tumor suppressor involved in colorectal and lung cancer, has been shown to induce dorsal mesoderm in Xenopus laevis in response to transforming growth factor beta and activins. The smad2 gene is expressed ubiquitously during murine embryogenesis and in many adult mouse tissues. Animals that lacked smad2 died before 8.5 days of development (E8.5). E6.5 homozygous mutants were smaller than controls, lacked the extraembryonic portion of the egg cylinder, and appeared strikingly similar to E6.5 smad4 mutants. This similarity was no longer evident at E7.5, however, because the smad2 mutants contained embryonic ectoderm within their interiors. Molecular analysis showed that smad2 mutant embryos did not undergo gastrulation or make mesoderm. The results demonstrate that smad2 is required for egg cylinder elongation, gastrulation, and mesoderm induction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号