首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in chemical, physical and sensory parameters of high‐oleic rapeseed oil (HORO) (NATREON?) during 72 h of deep‐fat frying of potatoes were compared with those of commonly used frying oils, palm olein (PO), high‐oleic sunflower oil (HOSO) and partially hydrogenated rapeseed oil (PHRO). In addition to the sensory evaluation of the oils and the potatoes, the content of polar compounds, oligomer triacylglycerols and free fatty acids, the oxidative stability by Rancimat, the smoke point and the anisidine value were determined. French fries obtained with HORO, PO and HOSO were still suitable for human consumption after 66 h of deep‐fat frying, while French fries fried in PHRO were inedible after 30 h. During the frying period, none of the oils exceeded the limit for the amount of polar compounds, oligomer triacylglycerols and free fatty acids recommended by the German Society of Fat Science (DGF) as criteria for rejection of used frying oils. After 72 h, the smoke point of all oils was below 150 °C, and the amount of tocopherols was reduced to 5 mg/100 g for PHRO and 15 mg/100 g for HORO and HOSO. Remarkable was the decrease of the oxidative stability of HOSO measured by Rancimat. During frying, the oxidative stability of this oil was reduced from 32 h for the fresh oil to below 1 h after 72 h of frying. Only HORO showed still an oxidative stability of more than 2 h. From the results, it can be concluded that the use of HORO for deep‐fat frying is comparable to other commonly used oils.  相似文献   

2.
The performance of soybean oil (SBO) and a partially hydrogenated soybean oil (PHSBO) was monitored by chemical, physical, and test kit analyses during 50 h of deep-frying of potatoes in SBO and 50 h of deep-frying of potatoes in PHSBO. The oxidative stability of SBO and PHSBO was measured by the iodine value, color index, FFA content, total polar compounds, and FA analysis of deep-frying SBO and PHSBO. SBO, with higher levels of unsaturated FA, had the faster rate of formation of geometric and positional isomers of unsaturated FA as measured by GC with standards. PHSBO performance under deep-frying conditions was significantly better than SBO with respect to iodine value, color index, and total polar compounds. The results from analyses using test kits had a good correlation with analytical parameters.  相似文献   

3.
Pilot plant-processed samples of soybean and canola (lowerucic acid rapeseed) oil with fatty acid compositions modified by mutation breeding and/or hydrogenation were evaluated for frying stability. Linolenic acid contents were 6.2% for standard soybean oil, 3.7% for low-linolenic soybean oil and 0.4% for the hydrogenated low-linolenic soybean oil. The linolenic acid contents were 10.1% for standard canola oil, 1.7% for canola modified by breeding and 0.8% and 0.6% for oils modified by breeding and hydrogenation. All modified oils had significantly (P<0.05) less room odor intensity after initial heating tests at 190°C than the standard oils, as judged by a sensory panel. Panelists also judged standard oils to have significantly higher intensities for fishy, burnt, rubbery, smoky and acrid odors than the modified oils. Free fatty acids, polar compounds and foam heights during frying were significantly (P<0.05) less in the low-linolenic soy and canola oils than the corresponding unmodified oils after 5 h of frying. The flavor quality of french-fried potatoes was significantly (P<0.05) better for potatoes fried in modified oils than those fried in standard oils. The potatoes fried in standard canola oil were described by the sensory panel as fishy.  相似文献   

4.
Measurements of degradation in frying oils are mainly based on physico-chemical properties. Total polar compounds (TPC) and free fatty acids (FFA) content in frying oils are used as a guide for discarding used oils. The purpose of this study was to evaluate the efficacy of a sensory method in detecting degradation in soybean oils used in potato chips deep frying. The sensory evaluation of oil samples was determined by a trained panel; after rigorous selection and training steps. Free fatty acid, TPC and Rancimat induction period (IP) were quantified in the same samples. The proposed sensory method was sensitive to small differences in rancidity. The selected and trained sensory panel discarded oil samples with 0.175% FFA as oleic acid, 18.92% TPC, and 0.20 h IP. According to the results achieved in this research sensorial trained panel response is sensitive and accurate in refusing deteriorated frying oils. Besides this, soybean oil can be used for deep frying procedures and safely discarded according to the panel response, although presenting up to 7% linolenic acid.  相似文献   

5.
The AOCS official method for the determination of total polar compounds in deep-frying oils is often used to estimate frying oil degradation. It can be accurate and reliable, but with sacrifices of time and expense. The TPM VERI-FRY® PRO (Libra Technologies, Inc., Metuchen, NJ) quick test provides a quick and easy way to measure polar compounds in frying oils. The modified quick test measured at 490 nm has a good correlation with the AOCS official method (r=0.975, P<0.001) and provides a good estimate of polar compound accumulation in oils over 80 h of deep-frying. Using the quick test to measure polar compounds is fast, convenient, economical and reliable.  相似文献   

6.
Stripped and non-stripped oils from Sclerocarya birrea [marula oil (SCO)], Aspongopus viduatus [melon bug oil (MBO)] and Agonoscelis pubescens [sorghum bug oil (SBO)], traditionally used for nutritional applications in Sudan, were investigated for their fatty acid and tocopherol composition, and their oxidative stability. Three stripping methods were used, phenolic compounds extraction, silicic acid column, and aluminum oxide column. The stripping methods did not affect the fatty acid composition. Non-stripped SCO, MBO and SBO contained oleic, palmitic, stearic and linoleic acids, which were not significantly (P < 0.05) different than stripped SCO, MBO and SBO. The stripping methods’ effect on the tocopherol composition of the studied oils, the total amount of tocopherol in non-stripped oils decreased by extraction of phenolic compounds, mean that part of the tocopherols was extracted with the phenolic compounds. No traces of tocopherols were found in oils stripped using silicic and aluminum columns and the tocopherols were eliminated during the stripping processes. The stability of SCO, MBO and SBO oils was 43, 38 and 5.1 h, respectively, this stability decreased by 22.0, 37.6 and 23.5%, respectively after extraction of phenolic compounds. This stability decreased by 96.9, 98.2 and 90.2% respectively, when stripped using the aluminium column and decreased by 92.6, 96.1 and 86.3% when stripped by the silicic column. It is possible to assume that the tocopherols and phenolic compounds play a more active role in the oxidative stability of the oils than the fatty acid composition and phytosterols.  相似文献   

7.
The effect of repeated deep frying of potatoes versus repeated heating/quenching on the chemical profile of palm oil was investigated. The novelty of the work is that the frying and heating/quenching experiments were conducted under similar time-temperature profiles. The effects of the frying load (potato-to-oil ratio: 1/7 and 1/35 kgpotatoes/loil) and of the time-temperature profile were examined. Whole palm oil and its polar fraction were analyzed using high pressure size exclusion chromatography. Both repeated frying and repeated heating/quenching generated polar and polymerization products in palm oil. Interestingly, no hydrolysis or other decomposition products were generated under any of the examined conditions. The presence of potatoes during frying in palm oil increased the concentration of polymerization products and polar compounds compared to oils without potatoes significantly. The effects of frying load on oil quality depended on frying time. No significant effect of frying load was observed up to frying times of 13 h (or 10 frying batches). However, frying oil quality was affected by frying load once frying times exceeded 24 h (or 20 batches).  相似文献   

8.
To determine effects of expeller pressing/physical refining of soybean oil (SBO) on frying, studies were conducted with expeller-pressed, physically refined, bleached, deodorized SBO (EPSBO); hexane-extracted, refined, bleached, deodorized SBO+TBHQ; and hydrogenated SBO (HSBO). Oils contained citric acid and dimethylpolysiloxane and were used for 35 h of frying french-fried potatoes. Polar compound levels in EPSBO were similar to SBO+TBHQ or HSBO. Flavor quality of potatoes was evaluated by trained, experienced, analytical sensory panelists. In early frying stages, potatoes fried in EPSBO had significantly lower intensities of fishiness than potatoes fried in SBO+TBHQ. Potatoes fried in HSBO were described as “hydrogenated”. Because of differences in flavor intensities and types, potatoes prepared in EPSBO had significantly better quality scores than those fried in SBO+TBHQ or HSBO during the first 15 h of frying. During later stages (25 and 35 h), potatoes fried in EPSBO had significantly better quality scores than potatoes fried in HSBO. Variations in minor oil constituents may partly explain these differences. EPSBO had less total tocopherols and phytosterols than did SBO at 0-time. During frying, TBHQ in SBO and Maillard reaction products in EPSBO probably inhibited tocopherol loss and therefore improved quality.  相似文献   

9.
To determine the frying stability of mid-oleic/ultra low linolenic acid soybean oil (MO/ULLSBO) and the storage stability of food fried in it, tortilla chips were fried in MO/ULLSBO, soybean oil (SBO), hydrogenated SBO (HSBO) and ultra low linolenic SBO (ULLSBO). Intermittent batch frying tests were conducted up to 55 h of frying, and then tortilla chips were aged up to 4 months at 25 °C. Frying oils were analyzed for total polar compounds to determine the frying stability of the oil. Tortilla chips were analyzed for hexanal as an indicator of oxidative deterioration and by sensory analysis using a trained, experienced analytical panel. Results showed no significant differences between the total polar compound levels for MO/ULLSBO and HSBO after 55 h of frying, indicating a similar fry life. However, total polar compound levels for ULLSBO and SBO were significantly higher than for either MO/ULLSBO or HSBO, indicating a lower oil fry life. Hexanal levels in aged tortilla chips fried in SBO were significantly higher than in chips fried in any of the other oils. Tortilla chips fried in MO/ULLSBO and HSBO had significantly lower hexanal levels than in chips fried in ULLSBO. A sensory analysis of rancid flavor intensity showed similar trends to those for hexanal formation. The chips fried in SBO had the highest rancid flavor intensity, with significantly lower hexanal levels in chips fried in HSBO and MO/ULLSBO. Based on these results, MO/ULLSBO not only had a good fry life but also produced oxidatively stable fried food, and therefore would be a healthful alternative to HSBO. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

10.
The performance of three high-oleic canola oils with different levels of linolenic acid [low-linolenic canola (LLC), medium-linolenic canola (MLC), and high-linolenic canola (HLC)], a medium-high-oleic sunflower oil, a commercial palm olein and a commercial, partially hydrogenated canola oil, was monitored by chemical and physical analyses and sensory evaluation during two 80-h deep-frying trials with potato chips. Linolenic acid content was a critical factor in the deep-frying performance of the high-oleic canola oils and was inversely related to both the sensory ranking of the food fried in the oils and the oxidative stability of the oils (as measured by color index, free fatty acid content, and total polar compounds). LLC and sunflower oil were ranked the best of the six oils in sensory evaluation, although LLC performed significantly better than sunflower oil in color index, free fatty acid content, and total polar compounds. MLC was as good as palm olein in sensory evaluation, but was better than palm olein in oxidative stability. Partially hydrogenated canola oil received the lowest scores in sensory evaluation. High-oleic canola oil (Monola) with 2.5% linolenic acid was found to be very well suited for deep frying.  相似文献   

11.
Review of stability measurements for frying oils and fried food flavor   总被引:6,自引:0,他引:6  
Measurements of degradation in frying oils based on oil physical properties and volatile and nonvolatile decomposition products were reviewed. Rapid methods by means of test kits were also considered. Factors that affect the analysis of total polar components (TPC) in frying oils were examined. Relationships between TPC, free fatty acid (FFA) content, Food Oil Sensor readings (FOS), color change (ΔE), oil fry life and fried-food flavor were evaluated. Flavor scores for codfish, fried in fresh and discarded commercial frying oil blends, were dependent upon individuals in the consumer panel (n=77). Part (n=29) of the panel preferred the flavor of fresh fat; others (n=24) didn't; the rest (n=24) had no preference. FFA, FOS and TPC were analyzed in two soybean oils and in palm olein during a four-day period in which french fries were fried. Flavor score and volatiles of potatoes fried on days 1 and 4 in each oil were also determined. TPC, FFA and FOS significantly increased (P<0.05) in all oils during the frying period. TPC and FFA were highest in the used palm olein, and flavor of potatoes fried in palm olein on day 1 was less desirable than those fried in the soybean oils. Potatoes fried in day-1 oils had significantly higher concentrations (P<0.10) of several pyrazines and aldehydes than those fried in day-4 oils. Presented at the 84th Annual Meeting of the American Oil Chemists' Society, Anaheim, California, April 25–29, 1993.  相似文献   

12.
The main objective of this study was to determine the effect of different frying oils and frying methods on the formation of trans fatty acids and the oxidative stability of oils. Sunflower, canola and commercial frying oils, the most commonly used oils for frying potatoes in the fast food industry, were used as the frying medium. The value for total polar compounds was highest when commercial frying oil was used in the microwave oven (22.5 ± 1.1). The peroxide value, as an indicator of oil oxidation, was lowest for microwave oven frying (2.53 ± 0.03). The K232 and K270 values were 0.41 ± 0.04 and 0.18 ± 0.02, respectively, for commercial frying oil in the microwave oven. The lowest free fatty acid content was recorded for the commercial frying oil used in the deep‐fat fryer at 190 °C. The highest iodine value was measured for sunflower oil used in the deep‐fat fryer (148.14 ± 0.07), indicating a greater degree of unsaturation. The lowest trans fatty acid value was recorded for sunflower oil in the microwave oven (0.17 ± 0.05), with a higher overall amount of total trans fatty acids observed for oils after frying in the electrical deep‐fat fryer compared to the microwave. Sunflower oil was favourable for both frying methods in terms of the trans fatty acid content.  相似文献   

13.
New legislation introduced in South Africa for the quality of used frying oils has resulted in the need to identify quicker, more suitable methods that correlate well with results from two official methods, namely, total polymerized glycerides and total polar components. Oil and product samples were taken at regular intervals during a commercial frying process in palm olein. Oil samples were analyzed for a number of different quality parameters viz. tocopherol content, dielectric constant, total polymerized glycerides, total polar components, tertiary butylhydroquinone (TBHQ) content, anisidine value, Rancimat induction period, and free fatty acid content, and the results statistically compared to results from official methods. Oil was expressed from product stored under accelerated conditions and analyzed for the same quality parameters. Fried product was also subjected to sensory evaluation to measure the degree of oil deterioration and sensory preference. The frying trial was successfully executed with refined, bleached, and deodorized palm olein and the frying oil used to a free fatty acid (FFA) content of 0.41%. Oil and product sampling were done at different FFA value levels. Frying oil quality was verified at the onset of the trial and at regular intervals. The frying oil total polar component value increased to approximately half of the limit set by the official regulation. This point was reached mainly due to the high starting value of the fresh oil. Frying oil total polymerized glycerides increased from below 1% to 2.1%. This increase is negligible when compared to the general trend for polyunsaturated oils. The alternative laboratory methods used for predicting oil quality can be rated as follows: total tocopherol content >dielectric constant >FFA >TBHQ content >anisidine value >Rancimat induction period. The first three methods correlated well with total polar component levels and it is recommended that the dielectric constant and FFA measurements be applied for monitoring oil condition during frying. It is possible that viscosity changes could be used for the monitoring of polyunsaturated frying oils. Evaluation of oil extracted from product revealed a negligible effect of non-oil components on oil quality parameters. The same was observed when product was stored at −10°C and at 37°C.  相似文献   

14.
Frying quality and oxidative stability of high-oleic corn oils   总被引:1,自引:3,他引:1  
To determine the frying stability of corn oils that are genetically modified to contain 65% oleic acid, high-oleic corn oil was evaluated in room odor tests and by total polar compound analysis. Flavor characteristics of french-fried potatoes, prepared in the oil, were also evaluated by trained analytical sensory panelists. In comparison to normal corn oil, hydrogenated corn oil and high-oleic (80 and 90%) sunflower oils, high-oleic corn oil had significantly (P<0.05) lower total polar compound levels after 20 h of oil heating and frying at 190°C than the other oils. Fried-food flavor intensity was significantly higher in the normal corn oil during the early portion of the frying schedule than in any of the high-oleic or hydrogenated oils; however, after 17.5 h of frying, the potatoes fried in normal corn oil had the lowest intensity of fried-food flavor. Corn oil also had the highest intensities of off-odors, including acrid and burnt, in room odor tests. High-oleic corn oil also was evaluated as a salad oil for flavor characteristics and oxidative stability. Results showed that dry-milled high-oleic corn oil had good initial flavor quality and was significantly (P<0.05) more stable than dry-milled normal corn oil after oven storage tests at 60°C, as evaluated by flavor scores and peroxide values. Although the high-oleic corn oil had significantly (P<0.05) better flavor and oxidative stability than corn oil after aging at 60°C, even more pronounced effects were found in high-temperature frying tests, suggesting the advantages of high-oleic corn oil compared to normal or hydrogenated corn oils.  相似文献   

15.
The measurement of FA profile, polar material, oligomers, oxidized triacylglycerols (OTG), total polyphenols, and cyclic FA monomers (CFAM) was used to evaluate the alteration of a high-oleic sunflower oil (HOSO) and an extra virgin olive oil (EVOO) used in 75 domestic fryings of fresh potatoes with frequent replenishment (FR) of unused oil. CFAM were absent in the unused EVOO but appeared in small amounts in the unused HOSO. Although polar material, oligomers, OTG, and CTAM contents increased and linoleic acid and polyphenols content decreased in both oils during repeated frying, the changes produced should be considered small and related to the use of very stable oils and FR. Throughout the 75 fryings, the total CFAM concentration was higher in HOSO than in EVOO. OTG increased more quickly in EVOO, whereas oligomers increased more quickly in HOSO. Polar material and oligomer content appear significantly correlated (r=0.9678 and r=0.9739, respectively; for both, P<0.001) with the CFAM content. A 25% polar material and 12% oligomer content would correspond to about 1 mg·kg−1 oil of CFAM. Data suggest that both oils, particularly EVOO, perform very well in frying, with a low production of oligomers, polar materials, and CFAM.  相似文献   

16.
A new and quick spectrophotometric method was developed to assess deep-frying oil quality. The scanned spectrophotometric curves of the frying oil samples from 350 and 650 nm wavelength changed systematically with the duration of deep frying. The absorbances of the frying oil samples, especially those measured at 490 nm, increased significantly during frying and were significantly correlated to frying time (r ≥0.95, P<0.001). There was a strong correlation between the absorbances of a set of oil samples taken from 0 to 80 h of deep frying and total polar compound contents in the same set of oil samples analyzed using the American Oil Chemists' Society official method (r=0.974, P<0.001). The equation for conversion of the absorbances to total polar compound contents is y=−2.7865x 2 +23.782x+1.0309. The absorbances of 10 different types of frying oils with samples taken from 0 to 80 h of deep frying in duplicate were also strongly correlated to total polar compounds in the same oil samples (r=0.953, P<0.001, n=220). The results show that this method is fast, simple, convenient, and reliable.  相似文献   

17.
Used frying oil recovered from food manufacturing companies in Japan and recycled often shows lower carbonyl (COV) and peroxide values (POV) than oil simply heated at 180 degrees C for 20 h does. In this study the reasons for the low COV of oil used for deep-frying were investigated by employing model experiments and actual commercial frying. The results suggested that in actual frying, the factor most influencing the low COV was vaporization of carbonyl compounds, together with steam generated from water contained in frying foodstuffs. It was also suggested that the low levels of COV were attributable partly to inhibition by protein, amino acids exuded from frying foodstuffs, and starch, and slightly to the effects of natural antioxidants in fresh oil and frying foodstuffs, oil absorption by frying foodstuffs, and dilution of oil in use by fresh oil added between uses. On the other hand, the chemical properties of oil in a fryer and in batter coatings of deep-fried foods made with the former oil were checked. Content of polar compounds (PC) and color score were obviously worse in the oil extracted from batter coatings than in that in the fryer, but there were no differences in COV or content of triacylglycerol (TG) of the two oils.  相似文献   

18.
Frying stability of sunflower oil (SO) with 23% oleic acid and 61% linoleic acid, and of high-oleic acid sunflower oil (HOSO) with 74% oleic acid and 13% linoleic acid was studied during 20 discontinuous deep-fat fryings of various frozen foods, with or without frequent replenishment of the used oil with fresh oil. Alterations of both oils were measured by column, gas-liquid and high-performance size-exclusion chromatography. Total polar content and compounds, related to thermoxidative changes, and diacylglycerides, related to hydrolytic changes, increased in all oils during frying but reached higher levels in SO than in HOSO. Nevertheless, the increased levels of diacylglycerides observed may result from the frozen potatoes prefried in palm oil. Oleic acid in HOSO and linoleic acid in SO significantly decreased, but the fatty acid modifications that occurred during the repeated fryings were not only related to thermoxidative alteration but also to interactions between the bath oil and the fat in the fried products. Data from this study also indicated that HOSO performed more satisfactorily than SO in repeated fryings of frozen foods. Moreover, frequent addition of fresh oil throughout the deep-frying process minimized thermoxidative and hydrolytic changes in the frying oils and extended the frying life of the oils.  相似文献   

19.
To determine antioxidative effects of ferulic acid and esterified ferulic acids, these compounds were added to soybean oils (SBO), which were evaluated for oxidative stability and frying stability. Additives included feruloylated MAG and DAG (FMG/FDG), ferulic acid, ethyl ferulate, and TBHQ. After frying tests with potato chips, oils were analyzed for retention of additives and polar compounds. Chips were evaluated for hexanal and rancid odor. After 15 h frying, 71% of FMG/FDG was retained, whereas 55% of ethyl ferulate was retained. TBHQ and ferulic acid levels were 6% and <1%, respectively. Frying oils with ethyl ferulate or TBHQ produced significantly less polar compounds than SBO with no additives. Chips fried in SBO with TBHQ or ferulic acid had significantly lower amounts of hexanal and significantly less rancid odor after 8 d at 60°C than other samples. Oils were also aged at 60°C, and stability was analyzed by PV, hexanal, and rancid odor. Oils with TBHQ or FMG/FDG had significantly less peroxides and hexanal, and a lower rancid odor intensity than the control. FMG/FDG inhibited deterioration at 60°C, whereas ethyl ferulate inhibited the formation of polar compounds in frying oil. Ferulic acid acted as an antioxidant in aged fried food. TBHQ inhibited oil degradation at both temperatures. Presented at the 94th AOCS Meeting & Expo, Kansas City, MO, May 4–7, 2003.  相似文献   

20.
Sunflower oil–beeswax oleogels at 3% (BWO-3) and 8% (BWO-8) organogelator concentration are prepared to evaluate oleogels as frying medium for potato strip frying against commercial sunflower oil (SO). Rheological and thermal analyses of oleogels prove that the samples are fully solid (20±3 °C) and totally liquid (180 °C), and thermoreversible. Fresh and used (after frying) fat analyses show that free fatty acidity (FFA), peroxide value (PV) and total polar materials (TPM) are enhanced in all samples at the 7th h, but the relative enhancement levels are lower in oleogel samples. Potato strips fried in oleogels absorb significantly less oil (11.97% and 12.07%) than the control sample (15.20%). Potatoes fried in oleogels are also more bright and yellower than the control sample. Textural profile of the fried potatoes indicates that the samples fried in oleogels are harder, springier, and gummier than that of the control sample. Sensory analysis shows that oleogel fried potatoes get higher sensory scores. Also, overall acceptability of potatoes fried in BWO-8 sample is the highest (8.50) among all. The prepared oleogels are found quite promising frying medium in this study. Further studies with other types of oleogels in extended period frying of various foods are suggested. Practical applications: The development of innovative frying techniques to produce healthier products with lower fat and calorie values are still a remarkable research area. Oleogelation is an emerging strategy used for solid-like oil designing and based on the formation of 3D networks by the addition of organogelators. Oleogelation is accepted as a healthy strategy to structure liquid oils into solid consistency, and oleogels have great edible applications in processed foods, and can be used as a frying medium. This work can guide the use of sunflower oil–beeswax oleogels as a frying medium and allow the development of more healthy fried snacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号