首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
涡旋光束的轨道角动量(OAM)可用于信息的编码,因此在自由空间光通讯等领域具有重要的应用价值。然而,实际的传输空间通常存在着各种随机介质,会造成传输涡旋光束的波面畸变,导致传统的方法无法准确测量涡旋光束的轨道角动量。针对此问题,以毛玻璃作为随机介质,基于深度学习技术,从涡旋光束经过毛玻璃所产生的散斑场中准确识别出了涡旋光束的轨道角动量。进一步,为提升光信息的编码与传输能力,还测试了多涡旋结构光束的轨道角动量识别。测试结果表明,对于五个涡旋结构的光束,所设计的网络也能从单帧散斑图中准确识别其轨道角动量。  相似文献   

2.
不同涡旋个数和拓扑荷的多涡旋-高斯光束具有不同光强和相位分布。当涡旋个数增大时,涡旋奇点个数增加,统计束宽也增大。利用分步傅里叶法数值模拟了多涡旋-高斯光束在负折射率非局域介质中的传输,发现涡旋点关于原点不对称或各涡旋点的拓扑荷不相等都可以改变孤子的传输方向,因此通过改变涡旋点位置和拓扑荷数可以实现光束传输方向的控制。若涡旋点虚部的符号发生改变,孤子的旋转方向也发生改变。此外,孤子的临界功率和轨道角动量都会随着拓扑荷的增加而增大。因此,可以通过涡旋点位置﹑涡旋点个数和拓扑荷的方式对光束信息进行编码,使光束在介质中传输时携带更多容量的信息。  相似文献   

3.
董淼  姚骏  白毅华 《激光与红外》2021,51(4):502-508
根据矢量衍射理论和部分相干理论,推导了部分相干圆偏振反常涡旋光束经过高数值孔径聚焦透镜后的光强表达式。详细讨论了入射光束参数以及聚焦透镜的数值孔径大小对光束紧聚焦特性的影响。研究结果表明:自旋方向,拓扑荷数以及数值孔径大小对光强分布有影响,相干长度以及光束阶数仅改变光强值,光束经过紧聚焦后在轴向方向上自旋角动量可以转换为轨道角动量。此外,研究了紧聚焦后光束对金属瑞利粒子的辐射力。研究表明:低阶光学参数的部分相干左旋圆偏振反常涡旋光束形成的实心光强分布可对金属瑞利粒子捕获。研究结果对部分相干涡旋光束在光镊中的应用具有理论价值。  相似文献   

4.
王琛  任元  吴昊  邱松 《红外与激光工程》2021,50(9):20200463-1-20200463-15
涡旋光束是一种携带轨道角动量且具有螺旋波振面的新型结构光场。自1992年Allen等首次证明了近轴条件下带有螺旋相位因子的光场具有轨道角动量以来,涡旋光束因其在光操控、光通信、光学测量和遥感等领域中的广泛应用而备受关注,特别是近年来涡旋光束在惯性测量领域的应用吸引了诸多学者的研究兴趣。文中主要涉及三个方面的内容:涡旋光束制备方法研究进展;涡旋光束在惯性测量领域中的关键应用,具体为基于涡旋光的旋转多普勒效应和量子陀螺;最后还就惯性测量对涡旋光束制备提出的新要求进行了讨论。  相似文献   

5.
正涡旋光束的相位分布具有螺线形,其相位因子为exp(imθ),光束中的每个光子携带m的轨道角动量,其中m称为拓扑荷数、从傍轴波动方程出发,一是推导出一种新颖旋转涡旋光束的解析解,解析结果表明,该旋转涡旋光束在传输过程中旋转,而且该新颖旋转涡旋光束的光斑像"X"形状、二是数值模拟傍轴波动方程。三是采用计算全息和空间光调制器的技术在实验中观察了不同传输距离处的光斑。通过以上研究表明,新颖旋转涡旋光束的解析结果、数值结果与实验结果吻合较好。此外,通过实验还测量了不同分布因子对光斑结构的影响,从而验证了新颖旋转涡旋光束的旋转以及保持"X"形状的特性。研究结果进一步完善了旋转涡旋光束,为实现新型奇特光束提供了科学的理论和实验依据、  相似文献   

6.
近年来,涡旋光束由于在囚禁和操控原子及其他微粒中的应用而引起了不少关注和研究.涡旋光束在光束的传播方向上有一个位相项e(ilθ),而且它拥有一个光束轨道角动量,如何从一个高斯基模变换到涡旋光束,已经提出了许多方法,比如在腔内放螺旋位相片直接产生,用计算机得到的位相片产生,用柱面镜或楔形镜产生光学涡旋.此外,在光纤中涡旋也能产生,比如可以使用光子晶体光纤作为一个非线性的两维光子晶体来产生光涡旋孤子.而在螺旋光纤中,纯的光学涡旋或者光学涡旋和TE及TM模式一起以高阶模形式出现,纯的模式在螺旋光纤传导中,会加上一个和内禀角动量以及螺旋立体角成比例的拓扑位相,而且HE和EH模式的工和y分量的分布模式在传输时也有旋转.1997年,E Abramochkin用一个图像旋转腔来产生一个涡旋激光束,在钝角三角形腔中用一个Dove棱镜来旋转光束,随着不同的棱镜旋转角度,可以得到不同的螺旋类型的激光光束.2003,Arlee V Smith在一个图像旋转腔的纳秒级光学参量振荡器里获得了涡旋光束,它的种子光和腔轴失调,在腔中形成了4个有着固定位相差的稳定模式,从而输出耦合成为一个涡旋光束.文中介绍用一种失调的多模光纤来做一个旋转腔,而把高斯基模光转换为一个涡旋光束的方法.在实验中,光源采用He-Ne的基模高斯光束,当激光束倾斜入射在光纤耦合器时,出射光场的模式会随输入位置和输入角而改变,在实验中用的是多模光纤,分别得到了顺时针和逆时针的涡旋光束, '还的到了环状空心光束.用光强分布仪记录了光束的分布,得到了不同尺寸光纤纤芯的光强分布图;测量了光束转换耦合效率,结果是涡旋光束的耦合输出效率达到了80%以上;空心光束的耦合输出效率达到了50%以上.另外,对于失调耦合器下多模光纤产生光学涡旋的理论分析和研究也将进一步研究.由于这种方法产生的光束稳定性很好,不仅可以产生实验所需要的光束,还可以把这种光束传输到所需要的地方,因此,应用前景很广,如操控原子、微粒和细胞等,也是一种特殊的光镊.  相似文献   

7.
在非线性介质中,离轴偏移涡旋光束的演化规律服从非局域、非线性薛定谔方程,通过解析法可以得到初始光强和轨道角动量的表达式.采用分步傅里叶法数值模拟离轴涡旋位置、拓扑电荷和涡旋环流方向等因素对光束的临界功率、光束宽度、轨道角动量、相结构分布和传输方向的影响.结果 表明,选择适当的离轴涡旋位置和拓扑电荷,双涡旋的单光束可以实现双涡结构的光强分布,也可以倾斜传输.轨道角动量的大小不仅取决于传统的拓扑电荷,也取决于离轴涡旋位置.因此,此类双涡旋单光束的可控传播在光束的信息携带和传导中具有重要的理论指导意义和应用前景.  相似文献   

8.
为研究高阶衍射级光束的轨道角动量,基于计算全息法在空间光调制器的傅里叶平面产生了不同衍射级的完美涡旋光束,并利用球面波干涉法对其拓扑荷值进行了测量。理论和实验结果表明不同衍射级p上的整数阶和分数阶完美涡旋光束的拓扑荷值l都满足l=mp的关系,其中m是相位掩模板的拓扑荷值。并进一步对不同衍射级的光学涡旋阵列进行了实验研究,结果表明光学涡旋阵列中光学涡旋的拓扑荷值满足l=p的关系,高阶衍射级上的衍射光束比+1级衍射光束具有更大的轨道角动量。该研究为光学涡旋及光学涡旋阵列进一步的研究及应用提供了理论和实验参考。  相似文献   

9.
分析了涡旋光与平面波的干涉现象,利用涡旋光共轴叠加干涉生成携带双态轨道角动量的光,并将其应用于轨道角动量拓扑荷数的检测。利用叉形错位光栅制备呈中心对称的涡旋光束,并讨论了在不同拓扑荷数情况下,利用两束涡旋光束干涉制备双态轨道角动量光束。数值模拟和实验结果表明,随着拓扑荷数的数值及正负的变化,两束涡旋光束干涉叠加后其干涉图像发生规律性的变化,据此可检测涡旋光束。涡旋光束在信息传输及编码方面具有重要意义,此研究为其在自由空间通信中的复用提供了实验依据,也为光通信系统的性能改善提供了可能。  相似文献   

10.
基于涡旋光与球面波的干涉原理,提出一种物体微位移的光学测量方法。改进马赫泽德干涉光路,其中一束光照射至空间光调制器产生涡旋光束作为参考光,另一束光经透镜变为球面波后照射至物体上,两束光干涉后干涉条纹呈螺旋状分布。当物体发生微小位移时两束光的光程差改变,螺旋干涉条纹发生旋转,通过干涉条纹的旋转角度可以确定物体的微位移量。经理论分析、仿真和实验证明:基于涡旋光与球面波干涉螺旋条纹旋转角度的变化能够实时监测物体位移量的变化,同时可以有效计算物体的微位移。实验中,测量物体的产生位移量为27 nm,通过涡旋光与球面波干涉螺旋条纹旋转角度的变化实际测得物体的位移为25.75 nm,误差为1.25 nm。  相似文献   

11.
酵母细胞在涡旋光阱中的旋转动力学研究   总被引:2,自引:0,他引:2  
利用液晶空间光调制器对高斯光束进行相位调制后可生成涡旋光束。因涡旋光束本身具有轨道角动量,酵母细胞被光阱捕获后会绕其中心旋转,对酵母细胞旋转的时序信号图进行傅里叶变换后可测出酵母细胞在光阱中的旋转角速度。详细讨论了酵母细胞旋转角速度随激光功率、拓扑荷以及捕获高度的变化关系。实验结果表明,酵母细胞的旋转角速度与激光功率成正比,与拓扑荷的平方成反比;捕获高度在14μm时角速度达到最大值;细胞在涡旋光阱中的旋转方向可由拓扑荷的符号决定,正号为逆时针旋转,负号为顺时针旋转。此实验结果有望应用在细菌鞭毛马达力矩的测量实验中。  相似文献   

12.
将部分相干径向偏振涡旋光束的轨道角动量应用于焦场目标探测,根据部分相干及Richards-Wolf矢量衍射积分理论,推导了光束焦场目标平面处的光场分布,讨论了焦平面处的轨道角动量密度分布特性,分析了入射光束的相干长度和聚焦透镜的数值孔径对纵向分量轨道角动量密度分布和轨道角动量的影响。结果表明,随着相干长度的增大,轨道角动量和轨道角动量密度迅速变大,当增大至0.5 cm后,轨道角动量和轨道角动量密度的变化趋于平缓,此后,相干长度的变化不再影响轨道角动量和轨道角动量密度分布。随着数值孔径的增大,轨道角动量和轨道角动量密度始终表现出增长的变化趋势,并且,变化程度在数值孔径大于0.7后越来越大。  相似文献   

13.
根据轨道角动量谱理论,推导了部分相干拉盖尔-高斯光束轨道角动量态的功率表达式。分析了相干长度、束宽对轨道角动量的影响,讨论了弱湍流大气中部分相干-拉盖尔高斯光束轨道角动量特性。结果表明:部分相干拉盖尔-高斯光束在相干长度与束腰半径比值固定的情况下,其初始轨道角动量态相对功率不会随着束腰半径的改变而变化。在部分相干拉盖尔-高斯光束初始相干长度与束腰半径取值大小相同的情况下,随着束腰半径的增大,光束在弱湍流大气中传输1 km处的初始轨道角动量态相对功率减小。  相似文献   

14.
光束轨道角动量的本征态可实现高维量子信息的传输,将此特性用于信息的编码,可以提高数据编码的密度.提出了对八台阶结构相位编码的方法,根据相位旋转角的不同,来控制入射光束的相位延迟,进而实现相位信息的编码.讨论了基模高斯光束经过不同台阶后的螺旋谱分布,通过阵列功率探测器检测特定编码台阶结构对应的螺旋谱,区分不同的编码数据态,实现相位信息的解码.每个存储单元理论上可编码24 bits数据信息,是四台阶结构编码信息的3倍.  相似文献   

15.
Vortex beams carrying orbital angular momentum have been produced recently with electron microscopy by interfering an incident electron beam with a grid containing dislocations. Here, we present an analytical derivation of vortex wave functions in reciprocal and real space. We outline their mathematical and physical properties and describe the conditions under which vortex beams can be used in scanning transmission microscopy to measure magnetic properties of materials at the atomic scale.  相似文献   

16.
针对圆环形阵列天线产生轨道角动量(orbital angular momentum, OAM)涡旋波的技术, 提出了宽带圆极化单臂螺旋天线(single-arm spiral antenna, SASA)构成的机械可重构圆环形阵列天线, 并深入研究了OAM涡旋波的模态检测和收发情况.利用SASA的相位特性, 调控各阵元绕自身轴线的旋转角度, 可灵活控制OAM涡旋波的主波束辐射方向.该设计可实现OAM模态和涡旋波辐射方向双可重构调控特性, 并根据SASA的旋转角方向实现左旋圆极化或右旋圆极化OAM涡旋波.实验加工并测试了该可重构圆环形OAM阵列天线, 验证了该思想和方法的正确性和有效性.  相似文献   

17.
高阶Bessel无衍射光束具有轨道角动量,并且是在自由空间中传播时一定范围内横向强度分布保持不变的单色光场,光场中的每个光子都具有确定的轨道角动量 ,在每一本征模中由光量子携带的角动量数由拓扑荷 表示,本征态 可被用于多维量子纠缠。文中基于高阶Bessel光束,提出一种利用具轨道角动量光子正交态作为信息载体实现光通信的方法,每光子携带有确定的轨道角动量态,可以提高通信协议的密钥生成效率,也为增加光通信距离提供一种量子解决方案。  相似文献   

18.
针对超表面产生OAM(轨道角动量)涡旋电磁波模态单一的问题,提出了一种宽频带多波束多模态OAM波束超表面的设计方法。采用方形开口环结构,优化几何参数,通过开口尺寸的变化构建8个3-bit 数字编码单元。利用矢量叠加原理,由产生单一模态OAM波束所需的相移得到多模态涡旋波束的超表面相位分布。采用天线阵列理论可直接求得超表面的远场方向图,并与全波仿真结果进行对比。研究结果表明,利用该方法设计的超表面,能够同时生成多个OAM波束,并且每个波束的辐射方向和OAM 模态可根据实际需求进行设定。设计的超表面还具有电尺寸小、剖面低和工作频带宽等优点,在无线通信领域具有广泛的应用前景。  相似文献   

19.
本文简单介绍了光场角动量的基本定义与概念,各类圆对称光束的角动量。同时,光束角动量能通过π/2模式转换器产生,由此修正光束的位相结构。光的吸收可以同时导致光束的自旋角动量或轨道角动量转移给微米粒子,就像光学镊子一样引起粒子的转动,从而形成光学扳手。另外,简单介绍了圆对称光束作为光学镊子和光学扳手在微米粒子和生物细胞的光学导引、囚禁与操控等领域中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号