首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
采用P-C-T曲线测试和XRD分析研究了Ti/Zr比变化对Ti-Mn基Laves相贮氢合金贮氢性能的影响.实验结果表明,随Ti/Zr比降低,合金放氢压力降低,贮氢量略微增加,平台坡度变陡.同时还研究了Mn/Cr比变化对Ti-Mn基Laves相贮氢合金晶体结构、活化性能以及贮氢性能的影响.着重探讨了Mn/Cr比变化时影响合金平衡压力的2个因素.对(Ti0.85Zr0.15)Mn1.4Cr0.2V0.32Fe0.08(x=-0.025,0,0.05,0.1)系列合金,根据其P-C-T测试和XRD分析结果,讨论了x的变化对合金贮氢量、平衡压力、α区宽度的影响.  相似文献   

2.
本文研究Zr1-xTix(Ni0.6 Mn0.3V0.1Cr0.05)2(x=0,0.1,0.2,0.3,0.4,0.5)系Lav es相储氢电极合金的气态P-C-T性能、晶体结构及电化学性能.XRD分析表明,Ti合金化使 Zr基储氢合金主相从C15相转变为C14相.当x>0.2时,第二相Zr7Ni10相消失, 并出现TiNi相.Ti合金化使Zr基储氢合金中C15相和C14相的晶格常数线性递减.气态P-C-T 测试表明,Ti合金化从x=0增加至x=0.5时合金的吸放氢平台压力升高约10倍,但降低了储氢合金的最大储氢容量.电化学测试表明,Ti合金化有利于改善Zr基储氢合金的活化性能, 这与Ti在KOH溶液中易于溶解有关,但过高的Ti含量降低了合金电极的循环稳定性.Zr1 -xTix(Ni0.6Mn0.3V0.1Cr0.05)2合金的电化学容量和高倍率放电性能均随合金中Ti含量的增加先上升后下降,这与合金的相结构组成有很大关系 .  相似文献   

3.
采用真空电弧炉(在氩气保护下)制备Zr1-xTixMn0.4Cr0.4Ni1.2贮氢合金,通过XRD、SEM和恒流充放电研究了合金的相结构、形貌和电化学性能。结果表明:Ti为C14型Laves相的稳定性元素,随着Ti含量的增加,C14型Laves相增多,C15型Laves相减少。当x=0.1时,合金综合性能最好,表现出良好的活化性能、循环稳定性能和高倍率放电特性,在放电电流300mA/g的条件下,充放电循环50次,合金保持稳定的放电容量。当X〉0.1时,合金放电容量下降。Ti的加入使合金氢化物稳定性降低,加入少量Ti,有利于合金的放电容量的提高和高倍率放电性能的提高。  相似文献   

4.
李嵩  季世军  孙俊才 《功能材料》2004,35(3):308-311
研究了贮氢电极合金Zr1-xTixMin0.7V0.2Co0.1Ni1.2的相结构和电化学性能。结果表明,随着掺Ti量的增加,该合金主相中C15型Laves相含量逐渐减少而C14型Laves相含量逐渐增加,同时非Laves相Zr7M10和TiNi相全部消失,说明元素Ti掺杂量的增加抑制了第二相的产生。当含Ti量x=0.2时,该合金具有最大放电容量Cmax为354mAh/g,在放电电流为300mAh/g条件下,高倍率放电性能比母体合金提高了15%。而对于合金Zr0.75Ti0.2La0.05Mn0.7V0.2Co0.1Ni1.2,其活化性能被大大提高,只需4次就能达到最大放电容量372mAh/g,而且经过30次循环仍能保持最大放电容量的93%。  相似文献   

5.
ZrTi-V-Mn-Ni系贮氢合金的相结构与电化学性能研究*   总被引:2,自引:1,他引:1  
文明芬  翟玉春  陈廉  佟敏 《功能材料》2001,32(4):379-381
优化合金组成,设计六种锆基AB2型贮氢合金材料。XRD分析表明,当0≤x≤0.5时,Zr1-xTix(NiCoMnV)2.1贮氢合金的主相都是Laves C15,但随Ti含量的增加,Laves C14相含量增多;当用V-Fe(85.6%)合金代替Zr0.6Ti0.4(NiCoMn-VFeCr)1.7中的V时,贮氢合金中Laves C14相的含量几乎可与Laves C15相当。电化学测试表明:Zr0.9Ti0.1(NiCoMnV)2.1贮氢电极的放电容量可达340mAh/g左右,但是随着Ti含量的逐渐增加,合金电极的放电容量降低很快。以适量的(V-Fe)合金取代Zr0.6Ti0.4(NiCoMnVFeCr)1.7合金中的V和Fe,发现合金电极的第一次放电容量就能达到200mAh/g左右,并且其容量稍高于含纯V的合金电极,容量可达315mAh/g左右。  相似文献   

6.
高性能贮氢电极合金的研究进展   总被引:6,自引:0,他引:6  
报道了高性能贮氢电极合金的研究进展,主要内容包括AB5型贮氢合金的A侧稀土元素组成、主要杂质元素(Fe,Si,Mg)以及合金制备技术(真空退火处理和快速凝固)对合金的相结构和电化学性能的影响。AB2型Zr基Laves相合金的相结构和相组成与电化学性能的关系,以及若干新型多元Zr基贮氢电极合金的性能。  相似文献   

7.
本文研究了Zr_(1-x)T_xMn_(0.6)Ni_(1.4)(T=Ti,V;x=0,0.1,0.2,0.4,0.6)合金的晶体结构和贮氢特性。这种合金的晶体结构属于Laves相的六方结构,空间群为P6_3/mmc。用Ti和V原子替代部分Zr原子后,六方结构的晶格常数变小。六方结构晶格常数的变小致使合金的氢平衡分解压随着Ti和V原子含量的增加而升高。  相似文献   

8.
系统研究了Zr部分替代Ti对Ti_(20-x)Zr_xCr_(24)Mn_8V_(40)Fe_8(x=0,1,2,3,4)系合金的微结构和储氢性能的影响。XRD和SEM分析表明,无Zr铸态合金(x=0)由体心立方(BCC)结构的固溶体单相组成,而含Zr合金(x=1~4)则由BCC主相和C14型Laves第二相组成,且第二相沿主相晶界析出。随着Zr含量x的增加,BCC主相晶胞体积先增加后减小,在x=1时达最大;C14型Laves相晶胞体积则逐渐增大。储氢性能研究表明,在293K和4MPa初始氢压条件下,所有含Zr合金无需活化即可快速吸氢,且合金的吸氢量随着Zr含量的增加逐渐增加,当x=4时,吸氢量最大为2.38wt%。该系合金的放氢动力学性能优良,放氢在10min内即能完成,但该系合金有效放氢容量及放氢效率(放氢容量与吸氢容量之比)还有待改善。  相似文献   

9.
杨晓光  张文魁 《功能材料》1999,30(3):279-280
本文研究探讨Mm合金化对难活化的AB2型Zr-Mn-Ni系贮氢合金的晶体结构,电化学容量及贮氢电极活化等特性的影响作用。Mm合金化加入可从根本上改善Zr系贮氢合金电极的活化性能。这与Mm合金化对贮氢电极合颗粒表面化学改性作用以及合金颗粒体内微结构改变等因素有关,XRD分析表明Mm合金化后同氢后金晶体结构仍为C15相,且其中的C14型Laves相含量明显增加,同时,也发现Mm合金化恶化了贮氢合金电化  相似文献   

10.
研究了Ti/Zr比变化对Ti Mn基Laves相贮氢合金贮氢性能的影响,发现随Ti/Zr、Mn/Cr比降低,合金放氢压降低,贮氢量略微增加,平台坡度变陡。  相似文献   

11.
为了改善AB2型Laves相贮氢合金的电化学性能,对AB2型Ti基及Ti-Zr基贮氢合金进行快淬处理。用XRD和SEM分析了铸态及快淬态合金的相结构,并观察了合金的微观组织形貌。研究了快淬工艺参数对AB2型Laves相贮氢合金的电化学性能及微观结构的影响。研究的结果表明快淬对AB2型Laves相贮氢合金电化学性能的影响与合金的成分密切相关。对Ti基合金,随淬速的增加,合金的容量显著提高,在一定淬速下出现极大值。快淬对合金的活化性能基本没有影响,合金的循环稳定性有所改善但不显著;对Ti-Zr基合金,随淬速增加,合金的循环稳定性得到大幅度提高,而合金的容量及活化性能明显降低。快淬使AB2型贮氢合金电化学性能发生变化的根本原因是合金的微观结构发生了变化。  相似文献   

12.
采用XRD、SEM-EDS等方法对Ti0.4Zr0.1V1.1Mn0.5Ni0.4Crx(x=0,0.1,0.2,0.3)储氢合金的微观结构及电化学性能进行了表征。XRD分析结果表明Ti0.4Zr0.1V1.1Mn0.5Ni0.4Crx(x=0,0.1,0.2,0.3)储氢合金由BCC结构的V基固溶体主相和少量的C14Laves第二相组成。SEM-EDS分析结果表明,V基固溶体主相为树枝晶结构,C14Laves相呈网格状沿着主相晶界析出。电化学测试结果表明,Ti0.4Zr0.1V1.1Mn0.5Ni0.4Crx(x=0,0.1,0.2,0.3)氢化物电极在303K下,随Cr含量的增加,最大放电容量分别为574.6mAh/g、418.8mAh/g、368.8mAh/g和322.9mAh/g。当x=0.3时,合金电极在333K下的最大放电容量达到了824.1mAh/g。Cr的添加显著提高了合金电极的高倍率放电性能和循环寿命,40次充放电循环后Ti0.4Zr0.1V1.1Mn0.5Ni0.4Cr0.3合金电极的容量保持率为62.3%。  相似文献   

13.
La1.5Mg0.5Ni7-xCox(x=0~1.8)贮氢合金结构和电化学性能研究   总被引:5,自引:0,他引:5  
La1.5Mg0.5Ni7-xCox(x=0~1.8)贮氢合金电极由高频感应熔炼加热处理制备得到.合金结构分析表明,合金主相为Ce2Ni7型结构,Mg原子分布在Ce2Ni7型单胞结构的Laves相单元中,而Co原子则分布在CaCu5单元中.随着合金中Co含量的增多,点阵参数和单胞体积呈增大趋势,氢化物变的更加稳定.合金的吸放氢平台在298K条件下介于1.01×103~1.01×104Pa之间,吸放氢滞后效应较小.合金电极的电化学分析表明合金具有390mAh/g以上的放电容量和良好的活化特性,Co元素不利于合金电极循环稳定性的改善,氢在合金中的扩散是电极反应的控制步骤.La1.5Mg0.5Ni7.0合金电极表现出较好的综合电化学性能.  相似文献   

14.
贮氢材料钒基固溶体合金的研究进展   总被引:1,自引:1,他引:0  
陈昌国  王常江 《材料导报》2007,21(11):68-71
钒基固溶体合金是一类重要的贮氢材料.概述了金属钒的氢化特性,讨论了钒基固溶体合金有效贮氢量低的原因;综述了合金组元及非金属杂质元素对钒基固溶体合金性能的影响,在吸氢主要元素钒基中添加其它元素(Ti、Ni、Cr、Mn、Fe、Hf、Zr、Nb、Co、Al、Si等)有利于提高合金的贮氢性能.  相似文献   

15.
研究了V2.46TiFe0.54Six(x=0.03~0.15)贮氢合金的相结构及其电化学性能.合金由BCC结构的V基固溶体主相和C14Laves第二相组成,C14Laves相以网状形式分布在BCC相的晶界上.随Si含量的增加,C14Laves相含量不断增大.电化学测试结果显示,合金的放电容量随循环次数的增加均显著降低.随x的增大,合金最大放电容量先增大后减小,在x=0.09时达到最大值,约522.6mAh/g;交换电流密度及氢的扩散系数则单调增大,倍率性能得到提高.  相似文献   

16.
李嵩季世军  孙俊才 《功能材料》2004,35(Z1):1039-1041
研究了非计量比合金Zr(Cr0.2Mn01V0.05Ni0.65)x(x=1.8~2.4)的相结构和电化学性质.结果发现,欠计量比时,随x变小,合金中C14型Laves相增多,第二相Zr7Ni10减少至消失,并出现了新相Zr9Ni11.而过计量比时,随x增加,合金中C14型Laves相和Zr7Ni10相都相应减少至消失,合金Zr(Cr0.2Mn0.1V005Ni0.65)24由C15型Laves单相组成.过计量比合金具有较好的活化性能,但非计量比合金的放电容量普遍低于计量比合金,而且非计量比对合金高倍率放电性能的提高影响不大.  相似文献   

17.
贮氢合金Zr(Mnl-xNix)2(0.40≤x≤0.75)的多相Rietveld分析表明,它是以C15型Laves相ZrM2为主的多相体系、不同M/Zr原子比(M=Nix或Mnl-x)非Laves相合金的出现与丰度和整个合金成分配比中Ni/Zr原子比的变化一致,并与Ni-Zr相图中具有同样Ni/Zr原子比的金属间化合物有相同的晶型.x=0.75,Zr7M10的丰度是38.57%;x=0.55,C15Laves相的最大丰度达85.98%,电化学放电容量也达最大值242mAh/g;≥0.55,C14型Laves相丰度在2%左右;x<0.55;C14型Laves相丰度随Mn取代量的增加而增加;x=0.40,丰度是26.38%.取代量x的增减引起每个原子的平均价电子数的变化可以解释C15Laves相出现同丰度的变化  相似文献   

18.
为了获得有较高电化学放电容量和良好循环稳定性的V基固溶体贮氢电极合金,采用感应熔炼方法制备了一系列含Al和Fe的V基贮氢电极合金V1.95Ti0.5Cr0.5NiO0.05AlxFey(x,y=0~0.05),通过X射线衍射、金相显微镜和电化学测试等手段研究了添加不同含量的Al和Fe对合金显微组织和电化学性能的影响。结果表明,所有合金均由BCC结构的V基固溶体主相和TiNi基第二相组成。电化学测试表明,增加Al含量后,合金的最大放电容量由345.2mAh/g(x=0)增加到430.7mAh/g(x=0.05),同时合金的高倍率放电性能、交换电流密度和氢的扩散系数得到改善。而随着Fe含量的增加,合金的循环稳定性能得到了一定的提高,但是最大放电容量有所降低。  相似文献   

19.
研究了合金V40Zr5Ti30Cr10Ni15Mox(x=0、2、4和6)的相结构及电化学性能。结果表明,所有合金均由BCC结构的V基固溶体主相和C14型Laves相组成。电化学测试结果表明,合金的放电容量随着Mo含量的增加先增大后减小。在x=2时,合金具有最大的放电容量408.3mAh/g,20次循环后容量保持率为83.2%。合金的高倍率放电性能随着Mo含量和电流密度的增加而降低,x=2时,合金的倍率放电性能最好。  相似文献   

20.
同艳维  高家诚  邓刚  张雪峰  方民宪 《功能材料》2013,(19):2833-2835,2839
研究了合金V40Zr5Ti30Cr10Ni15Mo x(x=0、2、4和6)的相结构及电化学性能。结果表明,所有合金均由BCC结构的V基固溶体主相和C14型Laves相组成。电化学测试结果表明,合金的放电容量随着Mo含量的增加先增大后减小。在x=2时,合金具有最大的放电容量408.3mAh/g,20次循环后容量保持率为83.2%。合金的高倍率放电性能随着Mo含量和电流密度的增加而降低,x=2时,合金的倍率放电性能最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号