首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of hydrogen and syngas from natural gas using a homogeneous charge compression ignition reforming engine is investigated numerically. The simulation tool used was CHEMKIN 3.7, using the GRI-3 natural gas combustion mechanism. This simulation was conducted on the changes in hydrogen and syngas concentration according to the variations of equivalence ratio, intake temperature, oxygen enrichment, engine speed, initial pressure, and fuel additives with partial oxidation combustion. The simulation results indicate that the hydrogen/syngas yields are strongly dependent on the equivalence ratio with maxima occurring at an optimal equivalence ratio varying with engine speed. The hydrogen/syngas yields increase with increasing intake temperature and oxygen contents in air. The hydrogen/syngas yields also increase with increasing initial pressure, especially at lower temperatures, yet high temperature can suppress the pressure effect. Furthermore, it was found that the hydrogen/syngas yields increase when using fuel additives, especially hydrogen peroxide. Through the parametric screening studies, optimum operating conditions for natural gas partial oxidation reforming are recommended at 3.0 equivalence ratio, 530 K intake temperature, 0.3 oxygen enrichment, 500 rpm engine speed, 1 atm initial pressure, and 7.5% hydrogen peroxide.  相似文献   

2.
This paper presents the results research on the optimal fuel compositions and the control parameters of the spark ignition engine fueled with syngas-biogas-hydrogen for the purpose of setting up a flexible electronic control unit for the engine working in a solar-biomass hybrid renewable energy system. In syngas-biogas-hydrogen mixture, the optimal content of hydrogen and biogas is 20% and 30%, respectively. Exceeding these thresholds, the improvement of engine performance is moderate, but the pollution emission increases strongly. The optimal advanced ignition angle is 38°CA, 24°CA, and 18°CA for syngas, biogas, and hydrogen, respectively. With the same content of hydrogen or biogas in the mixture with syngas, the advanced ignition angle of the hydrogen-syngas blend is less than that of the syngas-biogas blend by about 4°CA at the engine speed of 3000 rpm. The derating power of the engine is 30% and 23% as switching from the hydrogen and biogas fueling mode to the syngas fueling mode, respectively. However, NOx emission of the engine increase from 200 ppm (for syngas) to 2800 ppm (for biogas) and to over 6000 ppm (for hydrogen). The optimal advanced ignition angle, the optimal equivalence ratio of the syngas-biogas-hydrogen fuel mixture vary within the limits of the respective values for syngas and hydrogen. To improve the engine efficiency and reduce pollutant emissions, the loading control system of the engine should prioritize the adjustment of the fuel flow and then the adjustment of the air-fuel mixture flow.  相似文献   

3.
The combustion of hydrogen–diesel blend fuel was investigated under simulated direct injection (DI) diesel engine conditions. The investigation presented in this paper concerns numerical analysis of neat diesel combustion mode and hydrogen enriched diesel combustion in a compression ignition (CI) engine. The parameters varied in this simulation included: H2/diesel blend fuel ratio, engine speed, and air/fuel ratio. The study on the simultaneous combustion of hydrogen and diesel fuel was conducted with various hydrogen doses in the range from 0.05% to 50% (by volume) for different engine speed from 1000 – 4000 rpm and air/fuel ratios (A/F) varies from 10 – 80. The results show that, applying hydrogen as an extra fuel, which can be added to diesel fuel in the (CI) engine results in improved engine performance and reduce emissions compared to the case of neat diesel operation because this measure approaches the combustion process to constant volume. Moreover, small amounts of hydrogen when added to a diesel engine shorten the diesel ignition lag and, in this way, decrease the rate of pressure rise which provides better conditions for soft run of the engine. Comparative results are given for various hydrogen/diesel ratio, engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions.  相似文献   

4.
The product of gasification of solid biomass, also called syngas is believed to be good fuel for internal combustion engines in the move from the carbon based fuel to zero emission fuels. The only problem is its lower calorific value which is placed at one third of that of compressed natural gas (CNG). There are latest efforts to enhance the hydrogen rich syngas by augmenting it with methane so that the calorific value can be improved. This paper presents experimental results of the effect of the start of fuel injection timing (SOI) on the combustion characteristics, performance and emissions of a direct-injection spark-ignition engine fueled with a 20% methane augmented hydrogen rich syngas of molar ratio of 50% H2 and 50% CO composition. The engine was operated at fully open throttle and the start of fuel injection (SOI) was varied at 90, 120 and 180° before top dead center (BTDC). The experiment was conducted at lean mixture conditions in the low and medium engine speed ranges (1500–2400 RPM). The spark advance was set to the minimum advance for a maximum brake torque in all the test parameters. The methane augmented hydrogen rich syngas was observed to perform well over wide range of operation with SOI = 180°CA BTDC. However, SOI = 120°CA BTDC performed well at lower speeds recording improved performance and emissions. Limitation of operable load was observed for both SOI = 120°CA BTDC and 90°CA BTDC due to an insufficient time for complete injection of fuel at lower relative air–fuel ratio (λ) with higher speeds.  相似文献   

5.
The port-injection-type hydrogen engine is advantaged in that hydrogen gas is injected into the intake pipe through a low-pressure fuel injector, and the mixing period with air is sufficient to produce uniform mixing, improving the thermal efficiency. A drawback is that the flame backfires in the intake manifold, reducing the engine output because the amount of intake air is reduced, owing to the large volume of hydrogen. Here, the backfire mechanism as a part of the development of full-load output capability is investigated, and a 2.4-liter reciprocating gasoline engine is modified to a hydrogen engine with a hydrogen supply system. To secure the stability and output performance of the hydrogen engine, the excess air ratio was controlled with a universal engine control unit.The torque, excess air ratio, hydrogen fuel, and intake air flow rate changes in time were compared under low- and high-engine speed conditions with a wide-open throttle. The excess air ratio depends on the change in the fuel amount when the throttle is completely opened, and excess air ratio increase leads to fuel/air-mixture dilution by the surplus air in the cylinder. As the engine speed increases, the maximum torque decreases because the excess air ratio continues to increase due to the occurrence of the backfire. The exhaust gas temperature also increases, except at an engine speed of 6000 rpm. Furthermore, the increase in exhaust gas temperature affects the backfire occurrence. At 2000 rpm, under low-speed and wide-open throttle conditions, backfire first occurs in the No. 4 cylinder because the mixture is heated by the relatively high port temperature. In contrast, at 6000 rpm, under high-speed and wide-open throttle conditions, the backfire starts at the No. 2 cylinder first because of a higher exhaust gas temperature, resulting in a lower excess air ratio in cylinders 2 and 3, located at the center of the engine.  相似文献   

6.
The experiments to determine the effect of fuel-injection timings on engine characteristics and emissions of a DI engine fueled with NG-hydrogen blends (0%, 3%, 5% and 8%) at various engine speeds were conducted. Three injection timings namely 120°, 180° and 300° CA BTDC with a wide open throttle at relative air-fuel ratio, λ = 1.0 were selected. The ignition advance angle was fixed at 30° CA BTDC, while the injection pressure was fixed at 1.4 MPa for all the cases. The tests were firstly performed at low engine speed of 2000 rpm to determine the engine characteristics and emissions. The results showed that the engine performance (e.g. Brake Torque, Brake Power and BMEP), the cylinder pressure and the heat release have the highest values at the injection timing of 180° CA BTDC, followed by the 300° CA BTDC and the 120° CA BTDC. The NOx emission was found to be highest at the injection timing of 180° CA BTDC. The THC and CO emissions were found to decrease while the CO2 emission increased with the advancement in the injection timing. The addition of a small amount of hydrogen to the natural gas was found to increase the engine performance, enhance combustion and reduce emissions for any selected injection timings. Secondly, the tests were carried out at variable engine speeds (i.e. 2000 rpm-4000 rpm) in order to further investigate the engine performance. The injection timings of 180° and 300° CA BTDC with CNG-H2 blends were only selected for comparisons. The injection timing of the 300° CA BTDC was discovered to yield better engine performance as compared to the 180° CA BTDC injection timing after a cutoff engine speed of approximately 2500 rpm.  相似文献   

7.
Variable valve timing (VVT) and Miller cycle are advanced technologies employed to optimize engine performance by improving airflow exchange, which are seldom investigated based on the direct-injection (DI) hydrogen engine. The objective of this study is to assess the effects of intake valve closing (IVC) and exhaust valve opening (EVO) timing on the gas exchange performance, combustion, and emissions of a DI hydrogen engine, after which a synergistic control strategy of IVC and EVO timing is proposed. This work is conducted under wide-open throttle and 1500 rpm. The results indicate that the synergistic control of IVC and EVO timing can increase volumetric efficiency by more than 40%, enhance gas exchange performance, shorten combustion duration, and reduce cyclic variation, resulting in approximately 43.15% brake thermal efficiency. Furthermore, brake mean effective pressure can be increased by more than 60% and NO emissions are controlled to less than 20 ppm by optimizing valve timings.  相似文献   

8.
The addition of hydrogen is an effective way for improving the gasoline engine performance at lean conditions. In this paper, an experiment aiming at studying the effect of hydrogen addition on combustion and emissions characteristics of a spark-ignited (SI) gasoline engine under various loads and lean conditions was carried out. An electronically controlled hydrogen port-injection system was added to the original engine while keeping the gasoline injection system unchanged. A hybrid electronic control unit was developed and applied to govern the spark timings, injection timings and durations of hydrogen and gasoline. The test was performed at a constant engine speed of 1400 rpm, which could represent the engine speed in the typical city-driving conditions with a heavy traffic. Two hydrogen volume fractions in the total intake of 0% and 3% were achieved through adjusting the hydrogen injection duration according to the air flow rate. At a specified hydrogen addition level, gasoline flow rate was decreased to ensure that the excess air ratios were kept at 1.2 and 1.4, respectively. For a given hydrogen blending fraction and excess air ratio, the engine load, which was represented by the intake manifolds absolute pressure (MAP), was increased by increasing the opening of the throttle valve. The spark timing for maximum brake torque (MBT) was adopted for all tests. The experimental results demonstrated that the engine brake mean effective pressure (Bmep) was increased after hydrogen addition only at low load conditions. However, at high engine loads, the hybrid hydrogen–gasoline engine (HHGE) produced smaller Bmep than the original engine. The engine brake thermal efficiency was distinctly raised with the increase of MAP for both the original engine and the HHGE. The coefficient of variation in indicated mean effective pressure (COVimep) for the HHGE was reduced with the increase of engine load. The addition of hydrogen was effective on improving gasoline engine operating instability at low load and lean conditions. HC and CO emissions were decreased and NOx emissions were increased with the increase of engine load. The influence of engine load on CO2 emission was insignificant. All in all, the effect of hydrogen addition on improving engine combustion and emissions performance was more pronounced at low loads than at high loads.  相似文献   

9.
The current work investigates a coke oven gas fueled spark ignition (SI) engine from the perspective of the first and second laws in order to understand the energy conversion performance of fuels and achieve highly efficient utilization. A detailed energy and exergy analysis is applied to a quasi-dimensional two-zone spark ignition engine model which combines turbulence flame propagation speed model at 1500 rpm by changing gas fuel types, compression ratio, load and ignition timing. It was found that the irreversibility of methane is the maximum and that of syngas is the minimum among the three different fuels. The irreversibility in the combustion process of a coke oven gas fueled SI engine is reduced when the compression ratio or the throttle valve opening angle is increased and the ignition timing is delayed. Increasing the compression ratio and delaying the ignition timing can improve the first and second law efficiency and reduce the brake specific fuel consumption (BSFC). The power performance and fuel economy are good and the energy is also used effectively when the compression ratio is 11, the throttle angle is 90% and the ignition time is ?10° CA ATDC respectively.  相似文献   

10.
According to the literature, there is in lack of a comprehensive study to compare the combustion, performance and emissions of a diesel engine using diesel, biodiesel and ethanol fuels (DBE) in the blended mode and fumigation mode under various engine speeds. This study was conducted to fill this knowledge gap by comparing the effect of blended, fumigation and combined fumigation + blended (F + B) modes on the combustion, performance and emissions of a diesel engine under a constant engine load (50% of full torque) with five engine speeds ranging from 1400 rpm to 2200 rpm. A constant overall fuel composition of 80% diesel, 5% biodiesel and 15% ethanol, by volume % (D80B5E15), was utilized to provide the same fuel for comparing the three fueling modes.According to the average results of five engine speeds, the blended mode has higher peak heat release rate (HRR), ignition delay (ID), brake thermal efficiency (BTE), brake specific nitrogen monoxide (BSNO) and brake specific nitrogen oxides (BSNOX), but lower duration of combustion (DOC), brake specific fuel consumption (BSFC), brake specific carbon dioxide (BSCO2), brake specific carbon monoxide (BSCO), brake specific hydrocarbon (BSHC), brake specific nitrogen dioxide (BSNO2), brake specific particulate matter (BSPM), total number concentration (TNC) and geometric mean diameter (GMD), and similar peak in-cylinder pressure compared to the fumigation mode. In addition, for almost all the parameters, results obtained in the F + B mode are in between those of the blended and fumigation modes. In regard to the effect of engine speed, the results reveal that the increase in engine speed causes reduction in peak in-cylinder pressure, BTE, BSHC, BSNOX, BSNO and BSNO2, but increase in peak HRR, ID, DOC, BSFC, BSCO2, BSPM and TNC, and similar BSCO and GMD for almost all the tested fueling modes. It can be inferred that the blended mode is the suitable fueling mode, compared with the fumigation mode, under the operating conditions investigated in this study.  相似文献   

11.
The combustion, performance, and emissions of syngas (H2/CO) in a four-stroke, direct-injection, spark-ignition engine were experimentally investigated. The engine was operated at various speeds, ranging from 1500 to 2400 rev/min, with the throttle being held in the wide-open position. The start of fuel injection was fixed at 180° before the top dead center, and the ignition advance was set at the maximal brake torque. The air/fuel ratio was varied from the technically possible lowest excess air ratio (λ) to lean operation limits. The results indicated that a wider air/fuel operating ratio is possible with syngas with a very low coefficient of variation. The syngas produced a higher in-cylinder peak pressure and heat-release rate peak and faster combustion than for CNG. However, CNG produced a higher brake thermal efficiency (BTE) and lower brake specific fuel consumption (BSFC). The BTE and BSFC of the syngas were on par to those of CNG at higher speeds. For the syngas, the total hydrocarbon emission was negligible at all load conditions, and the carbon monoxide emission was negligible at higher loads and increased under lower load conditions. However, the emission of nitrogen oxides was higher at higher loads with syngas.  相似文献   

12.
Producing the syngas by onboard ethanol steam reforming is an effective way for recovering the exhaust heat in the engine tailpipe. Besides, as hydrogen is contained in the syngas, the addition of syngas is also capable of improving engine combustion and emissions characteristics. In this paper, an experimental study was carried out on a four-cylinder 1.6 L spark-ignited engine to explore the effect of syngas addition on the engine performance. A fuel reforming reactor with the copper based catalysts was designed and mounted on the engine tailpipe, so that the ethanol solution could be decomposed to be syngas which is mainly composed of hydrogen and carbon monoxide when the catalysts were heated by the exhaust gas. The intake manifolds was also modified to permit syngas to be injected into the fourth cylinder of the engine. The engine was run at 1800 rpm and a manifolds absolute pressure of 61.5 kPa. The spark timing for the maximum brake torque was adopted for each testing point. The syngas volume fraction in the total intake gas was gradually increased from 0% to 2.43%. Meanwhile, the gasoline injection duration governing by a hybrid electronic control unit was adjusted to keep the excess air ratio of the fuel-air mixture in the fourth cylinder at about 1.00. The experimental results demonstrated that the syngas volume flow rate was markedly enhanced from 90 to 240 L/h when the feedstock flow rate was increased from 18 to 54 mL/min. The peak ethanol conversion efficiency reached 81.16% at a feedstock flow rate of 36 mL/min. The hydrogen concentration was increased whereas carbon monoxide concentration was decreased in the syngas with the increase of the feedstock supply. The engine indicated thermal efficiency was raised to be 39.01% at the syngas volume fraction of 2.43%. The flame development and propagation durations were shortened; HC and NOx emissions were reduced whereas CO emission was increased after the syngas addition at the stoichiometric condition.  相似文献   

13.
This work presents the strategies applied to improve the performance of a spark ignition (SI) biogas engine. A diesel engine with a high compression ratio (CR) was converted to SI to be fueled with gaseous fuels. Biogas was used as the main fuel to increase knocking resistance of the blends. Biogas was blended with natural gas, propane, and hydrogen to improve fuel combustion properties. The spark timing (ST) was adjusted for optimum generating efficiencies close to the knocking threshold. The engine was operated on each blend at the maximum output power under stable combustion conditions. The maximum output power was measured at partial throttle limited by engine knocking threshold. The use of biogas in the engine resulted in a power derating of 6.25% compared with the original diesel engine (8 kW @ 1800 rpm). 50% biogas + 50% natural gas was the blend with the highest output power (8.66 kW @1800 rpm) and the highest generating efficiency (29.8%); this blend indeed got better results than the blends enriched with propane and hydrogen. Tests conditions were selected to achieve an average knocking peak pressure between 0.3 and 0.5 bar and COV of IMEP lower than 4% using 200 consecutive cycles as reference. With the blends of biogas, propane, and hydrogen, the output power obtained was just over 8 kW whereas the blends of biogas, natural gas, and hydrogen the output power were close to 8.6 kW. Moreover, a new approach to evaluate the maximum output power in gas engines is proposed, which does not depend on the engine % throttle but on the limit defined by the knocking threshold and cyclic variations.  相似文献   

14.
The emission characteristics of vehicles fueled by hydrogen-enriched syngas were investigated under the no-load condition. Syngas was produced using a fixed-bed gasification system. A Jetta car was modified and used for emission experiments with engine speed between 800 and 4800 rpm. Syngas compositions and emissions were analyzed using gas chromatography and a SPX-Tecnotest 488 exhaust gas analyzer, respectively. The results showed that syngas composition had significant effect on HC and NOx emission and air ratio (λ) was the key factor affecting CO emission. HC and NOx emissions increased significantly from 6 to 16 ppm and 139–832 ppm, respectively, when engine speed increased from 800 to 4800 rpm. CO emission did not significantly increase (lower than 0.5%) at engine speed less than 3200 rpm; at higher than 4800 rpm engine speed, CO emission increased rapidly (up to 2.7%).  相似文献   

15.
Hydrogen has many excellent combustion properties that can be used for improving combustion and emissions performance of gasoline-fueled spark ignition (SI) engines. In this paper, an experimental study was carried out on a four-cylinder 1.6 L engine to explore the effect of hydrogen addition on enhancing the engine lean operating performance. The engine was modified to realize hydrogen port injection by installing four hydrogen injectors in the intake manifolds. The injection timings and durations of hydrogen and gasoline were governed by a self-developed electronic control unit (DECU) according to the commands from a calibration computer. The engine was run at 1400 rpm, a manifold absolute pressure (MAP) of 61.5 kPa and various excess air ratios. Two hydrogen volume fractions in the total intake of 3% and 6% were applied to check the effect of hydrogen addition fraction on engine combustion. The test results showed that brake thermal efficiency was improved and kept roughly constant in a wide range of excess air ratio after hydrogen addition, the maximum brake thermal efficiency was increased from 26.37% of the original engine to 31.56% of the engine with a 6% hydrogen blending level. However, brake mean effective pressure (Bmep) was decreased by hydrogen addition at stoichiometric conditions, but when the engine was further leaned out Bmep increased with the increase of hydrogen addition fraction. The flame development and propagation durations, cyclic variation, HC and CO2 emissions were reduced with hydrogen addition. When excess air ratio was approaching stoichiometric conditions, CO emission tended to increase with the addition of hydrogen. However, when the engine was gradually leaned out, CO emission from the hydrogen-enriched engine was lower than the original one. NOx emissions increased with the increase of hydrogen addition due to the raised cylinder temperature.  相似文献   

16.
Many studies of renewable energy have shown hydrogen is one of the major green energy in the future. This has lead to the development of many automotive application of using hydrogen as a fuel especially in internal combustion engine. Nonetheless, there has been a slow growth and less knowledge details in building up the prototype and control methodology of the hydrogen internal combustion engine [1]. In this paper, The Toyota Corolla 4 cylinder, 1.8l engine running on petrol was systematically modified in such a way that it could be operated on either gasoline or hydrogen at the choice of the driver. Within the scope of this project, several ancillary instruments such as a new inlet manifold, hydrogen fuel injection, storage system and leak detection safety system were implemented. Attention is directed towards special characteristics related to the basic tuning of hydrogen engine such as: air to fuel ratio operating conditions, ignition timing and injection timing in terms of different engine speed and throttle position. Based on the experimental data, a suite of neural network models were tested to accurately predict the effect of different engine operating conditions (speed and throttle position) on the hydrogen powered car engine characteristics. Predictions were found to be ±3% to the experimental values for all of case studies. This work provided better understanding of the effect of hydrogen engine characteristic parameters on different engine operating conditions.  相似文献   

17.
Increase the equivalence ratio is a good way to improve performance of turbocharged hydrogen engines at low engine speeds. To explore the feasibility of this strategy, this paper investigated the experimental data of a 2.3 L turbocharged port fuel injection (PFI) hydrogen engine at 1500 rpm and 2000 rpm. The results showed that the power can increase from 6.8 kW to 21 kW at 2000 rpm and from 6.4 kW to 16.5 kW at 1500 rpm with increasing of the equivalence ratio. However, the equivalence ratio corroding to the biggest power is 0.8 at 1500 rpm and 0.9 at 2000 rpm because the turbocharged pressure and the volumetric efficiency at 2000 rpm are higher than the ones at 1500 rpm. The biggest BTE can reach to 30.1% at 2000 rpm and 29.3% at 1500 rpm within the range of 0.65–0.8. The covariance of indicated mean effective pressure (CoVimep) of turbocharged hydrogen is lower than 1.5% at low engine speeds and the combustion stability increased with the increase of equivalence ratio. The NOx can be reduced from 877 ppm to 0 ppm at 1500 rpm and from 1259 ppm to 17 ppm at 2000 rpm, which means the reduction efficiency of H2+TWC can exceed 99%.  相似文献   

18.
The current study addresses engine specification and second thermodynamic law analysis of the CI diesel engine fueled with hydrogen, DME, and diesel at six engine speeds. The 3-D simulation was first carried out and then the results were exploited to calculate availability through a developed in-house code. Availability analysis was performed separately for chemical and thermo-mechanical availability to highlight each fuel'0s capacity in chemical and mechanical efficiency delivery. The results indicate that hydrogen fuel prevails in chemical and thermo-mechanical availability, indicated power, and mean effective in-cylinder pressure under all crank angle and engine speeds. Temperature distribution has more extensive and intensified region developed across the cylinder, although hydrogen demonstrated the lowest ISFC (indicated specific fuel consumption) value. With regard to engine speed, 2000 rpm shows overall better IP (indicated power), IMEP (indicated mean effective pressure), chemical and thermo-mechanical availability, irrespective of fuel type. The mean irreversibility rate for PMC (pre-mixed combustion) and MCC (mixing controlled combustion) combustion phase shows a different trend. Furthermore, hydrogen fueled engine demonstrates the highest temperature distribution of 2736 K and the wall heat flux to the amount of 29160 W. The variance of chemical availability for Hydrogen from 1500 to 4000 rpm decreases by crank-angle evolution from 43.3% to 10.1% corresponding to 10–40°CA after top dead center.  相似文献   

19.
In this paper, a gasoline Wankel engine was modified and equipped with self-developed hybrid electronic control unit to experimentally investigate the effect of hydrogen-enrichment level on combustion characteristics of a gasoline Wankel engine at wild open throttle position and lean burn regime. Testing were carried out under constant engine speed of 3000 rpm and the lean operating limit of the original gasoline engine. The spark timing was set at 15 °BTDC. The hydrogen energy fraction in the intake was gradually increased from 0% to 10%. The results showed that hydrogen enrichment was effective on improving the combustion process through the shortened of the flame development and the flame propagation periods, advancing the central heat release, increasing the HRRmax and reducing the cyclic variation proportionally to the amount of hydrogen added to the air fuel mixture. Furthermore, increasing hydrogen fraction in the intake improves the engine economy by reducing the cooling loss.  相似文献   

20.
Limitations on the upgradation of biogas to biomethane in terms of cost effectiveness and technology maturity levels for stationary power generation purpose in rural applications have redirected the research focus towards possibilities for enhancement of biogas fuel quality by blending with superior quality fuels. In this work, the effect of hydrogen enrichment on performance, combustion and emission characteristics of a single-cylinder, four-stroke, water-cooled, biogas fuelled spark-ignition engine operated at the compression ratio of 10:1 and 1500 rpm has been evaluated using experimental and computational (CFD) studies. The percentage share of hydrogen in the inducted biogas fuel mixture was increased from 0 to 30%, and engine characteristics with pure methane fuel was considered as a baseline for comparative analysis. The CFD model is developed in Converge CFD software for a better understanding on combustion phenomenon and is validated with experimental data. In addition, the percentage share of hydrogen enrichment which would serve as a compromise between biogas upgradation cost and engine characteristics is also identified. The results of study indicated an enhancement in combustion characteristics (peak in-cylinder pressure increased; COVIMEP reduced from 9.87% to 1.66%; flame initiation and combustion durations reduced) and emission characteristics (hydrocarbon emissions reduced, and NOx emissions increased but still lower than pure methane) with increase in hydrogen share from 0 to 30% in biogas fuelled SI engine. Flame propagation speed increased and combustion duration reduced with hydrogen supplementation and the same was evident from the results of the CFD model. Performance of the engine increased with increase in hydrogen share up to 20% and further increment in hydrogen share degraded the performance, owing to heat losses and the enhancement in combustion characteristics were relatively small. Overall, it was found that 20% blending of hydrogen in the inducted biogas fuel mixture will be effective in enhancing the engine characteristics of biogas fuelled engines for stationary power generation applications and it holds a good compromise between biogas upgradation cost and engine performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号