首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dark fermentation (DF) is a promising biological process for hydrogen production from biomass. However, low hydrogen yield (HY) is a major hurdle impeding its use at large-scale operation. A potential way to mitigate this problem is to increase the concentration of substrate in the process to increase hydrogen production. The present study investigated the possibility of using high-solid DF to produce hydrogen from cassava processing wastes, i.e., cassava pulp (CP) and cassava processing wastewater (CPW). CP was suspended in CPW and hydrolyzed enzymatically under optimum conditions of 150 g-CP/L, 29 U/g of α-amylase, 47 U/g of glucoamylase, and 60 FPU/g of cellulase. The hydrolysis performed at 50 °C for 24 h yielded a reducing sugar concentration of 117.7 ± 1.8 g/L, equivalent to 0.78 g-reducing-sugar/g-CP. Subsequent DF of CP-CPW enzymatic slurry, which contained 12.1% water insoluble solids, resulted in a cumulative production of 13.72 ± 0.22 L-H2, equivalent to 225.2 ± 3.7 mL-H2/g-VS. This was 83.1% of a maximum stoichiometric HY, based on carbohydrate content of CP and soluble metabolites production. The present study shows clearly the applicability of high-solid DF in the production of hydrogen from cassava processing wastes.  相似文献   

2.
Biohydrogen production using dark fermentation (hydrolysis and acidogenesis) is one of the ways to recover energy from lactate wastewater from the food-processing industry, which has high organic matter. Dark fermentation can be affected by the temperature, pH and the microbial community structure. This study investigated the effects of temperature and initial pH on the biohydrogen production and the microbial community from a lactate wastewater using dark fermentation. Biohydrogen production was successful only at lower temperature levels (35 and 45 °C) and initial pH 6.5, 7.5 and 8.5. The highest hydrogen yield (0.85 mol H2/mol lactate consumed) was achieved at 45 °C and initial pH 8.5. The COD reduction achieved by fermenting the lactate wastewater at 35 °C ranged between 21 and 30% with the maximum COD reduction at pH 8.5, and at 45 °C, the COD reduction ranged between 12 and 21%, with the maximum at pH 7.5. At 35 °C, the lactate degradation ranged between 54 and 95%, while at 45 °C, it ranged between 77 and 99.8%. 16S rRNA sequencing revealed that at 35 °C, bacteria from the Clostridium genera were the most abundant at the end of the fermentation in the reactors that produced hydrogen, while at 45 °C Sporanaerobacter, Clostridium and Pseudomonas were the most abundant.  相似文献   

3.
Bovine ruminal fluid (BRF) bioaugmented with Clostridium acetobutylicum (Clac) was assessed for hydrolyzing cellulose and produce biohydrogen (BioH2) simultaneously from pretreated corncob in a single step, without the use of external hydrolytic biocatalysts. The corncob was pretreated using three thermochemical methods: H2SO4 2%, 160 °C; NaOH 2%, 140 °C; NaOCl 2%, 140 °C; autohydrolysis: H2O, 190 °C. Subsequently, BioH2 production was carried out using the pretreated material with the highest digestibility applying a Taguchi experimental array to identify the optimal operating conditions. The results showed a higher glucose released from pretreated corncob with H2SO4 (134.7 g/L) compared to pretreated materials by autohydrolysis, NaOH and NaOCl (123 g/L, 89.8 g/L and 52.9 g/L, respectively). The mixed culture was able to hydrolyze the pretreated corncob and produce 575 mL of H2 (at 35 °C, pH 5.5, 1:2 ratio of BRF:Clac and 5% of solids loading) equivalent to 132 L H2/Kg of biomass.  相似文献   

4.
Activated sludge (AS) from wastewater treatment plant of brewery industry was used as substrate for hydrogen production by anaerobic mixed cultures in batch fermentation process. The AS (10% TS) was pretreated by acid, heat and combined acid and heat. Combined acid- heat treatment (0.5% (w/v) HCl, 110 °C, 60 min) gave the highest soluble COD (sCOD) of 1785.6 ± 27.1 mg/L with the highest soluble protein and carbohydrate of 8.1 ± 0.1 and 38.5 ± 0.8 mg/L, respectively. After the pretreatment, the pretreated sludge was used to produce hydrogen by heat treated upflow anaerobic sludge blanket (UASB) granules. A maximum hydrogen production potential of 481 mL H2/L was achieved from the AS pretreated with acid (0.5% (w/v) HCl) for 6 h.  相似文献   

5.
This study was investigated to utilize innovatively oil-free diaphragm pump to forcibly desorb the hydrogen from the small pilot MgH2–TiH2 based hydride reactor below the theoretical temperature of 278 °C. Active MgH2-0.1TiH2 composites were prepared using ball milling. Their hydrogenation performances at 25–300 °C were measured under a constant H2 flow mode using a modified Sieverts apparatus. The dehydrogenation rates at 250–350 °C with or without diaphragm pump were investigated to examine whether the pilot reactors could be integrated with a proton exchange membrane fuel cell (PEMFC) for power generation. At a H2 flow rate of 25 ml min−1 g−1, the reactors exhibited excellent hydrogenation, achieving gravimetric hydrogen storage capacities of 2.9–5.2 wt% (excluding the weight of the reactors) at 25–300 °C after 22 min. All hydrided MgTi–based reactors could be dehydrogenated at 250 °C at an average rate of 5 ml min−1 g−1 under vacuum. This is the first demonstration of Mg-based reactors that were hydrogenated at 100 °C and dehydrogenated at 250 °C to power a small PEMFC, yielding a measured conversion efficiency of 18%.  相似文献   

6.
This study aimed to evaluate the capacity of different inoculum sources and their bacterial diversity to generate hydrogen (H2). The highest Simpson (0.7901) and Shannon (1.581) diversity indexes for H2-producing bacterial isolates were estimated for sewage inocula. The maximum cumulative H2 production (Hmax) was 639.6 ± 5.49 mL/L recorded for the sewage inoculum (SS30) after 72 h. The highest H2-producing isolates were recovered from SS30 and identified as Clostridium saccharobutylicum MH206 and Lactobacillus brevis MH223. The Hmax of C. saccharobutylicum, L. brevis, and synergistic coculture was 415.00 ± 24.68, 491.67 ± 15.90, and 617.67 ± 3.93 mL/L, respectively. The optimization process showed that the Hmax (1571.66 ± 33.71 mL/L) with a production rate of 58.02 mL/L/h and lag phase of 19.33 h was achieved by the synergistic coculture grown on 3% molasses at 40 °C, pH 7, and an inoculum size of 25% (v/v). This study revealed the economic feasibility of the synergistic effects of coculture on waste management and biohydrogen production technology.  相似文献   

7.
The objective of this study was to evaluate the effects of hydraulic retention time (HRT) (8–1 h) on H2 production from sugarcane juice (5000 mg COD L−1) in mesophilic (30 °C, AFBR-30) and thermophilic (55 °C, AFBR-55) anaerobic fluidized bed reactors (AFBRs). At HRTs of 8 and 1 h in AFBR-30, the H2 production rates were 60 and 116 mL H2 h−1 L−1, the hydrogen yields were 0.60 and 0.10 mol H2 mol−1 hexose, and the highest bacterial diversities were 2.47 and 2.34, respectively. In AFBR-55, the decrease in the HRT from 8 to 1 h increased the hydrogen production rate to 501 mL H2 h−1 L−1 at the HRT of 1 h. The maximum hydrogen yield of 1.52 mol H2 mol−1 hexose was observed at the HRT of 2 h and was associated with the lowest bacterial diversity (0.92) and highest bacterial dominance (0.52).  相似文献   

8.
The Central Composite Rotational Design (CCRD) was employed to find the optimum pH (5.09–7.91) and temperature (27.1–46,9 °C) for hydrogen production in banana waste (BW) fermentation by autochthonous microbial biomass. The P and Rm ranged between 6.06 and 62.43 mL H2 and 1.13–12.56 mL H2.h?1, respectively. The temperature 37 °C and pH 7.0 were the optimum conditions for P (70.19 mL H2) and Rm (12.43 mL H2.h?1) as predicted by the mathematical model. Fructose and glucose are the primary alternative carbon sources in banana waste-fed batch reactors. The high concentration of lactic acid and H2 production was associated to Lactobacillus (52–81%) and Clostridium (14–35%). However, the most important finding was about butyric acid (HBu). This acid is the better indicator of hydrogen production than acetic acid (HAc). The pH effected carbohydrates fermentation and organic acids production. The genes encoding the enzymes related to galactose, sucrose, fructose, arabinose and xylose metabolism were predominant.  相似文献   

9.
Canola meal is a low-value agricultural residue obtained after oil extraction from canola, the utilization of which requires further attention. On the other hand, plastic waste disposal is also another leading issue that creates severe environmental challenges. Supercritical water gasification is considered an environmentally friendly technology to produce hydrogen from plastic residues and organic wastes. This study deals with hydrothermal co-gasification of canola meal and plastic wastes (i.e., low-density polyethylene) while exploring the influence of temperature (375–525°C), residence time (15–60 min) and plastic-to-biomass ratio (0:100, 20:80, 50:50, 80:20 and 100:0) on hydrogen yield. Maximum hydrogen yield (8.1 mmol/g) and total gas yield (17.9 mmol/g) were obtained at optimal temperature and residence time of 525°C and 60 min, respectively. A change in the gas yield with variable plastic-to-biomass ratio showed synergistic effects between both feedstocks. The trend of catalytic performance towards improving hydrogen yield was in the following order: WO3–TiO2 (18.5 mmol/g) > KOH (16.9 mmol/g) > TiO2 (9.5 mmol/g) > ZrO2 (7.8 mmol/g) > WO3–ZrO2 (7.4 mmol/g).  相似文献   

10.
Batch tests were carried out to investigate the production of H2 considering the effects of: substrate concentration in a range of 3–25 g-COD/L; Initial pH: from 4 to 7 and 11 and temperatures of: 20, 35, 45 and 55 °C. The optimal substrate was 25 g-COD/L, with a reduction of COD of 73% and a yield of H2 of 5.95 mM/gCOD; and the optimal initial pH was 11.0, with a 70% of COD reduction and a H2 yield of 4236 mM/gCOD. The optimum temperature for pH = 11 was 35 °C, with a COD reduction of 69.8% and H2 yield of 6.3 mM/gCOD. Escherichia, Acinetobacter, Alcaligenes, Brevibacterium, Clostridium and Mycobacterium were isolated from pretreated inoculum samples and identified by 16S rDNA sequencing. The results suggest that biofilm reactors developed on a natural support such as Opuntia imbricata have good potential for hydrogen production from dairy wastewater.  相似文献   

11.
This study aims to present the hydro-catalytic treatment of organoamine boranes for efficient thermal dehydrogenation for hydrogen production. Organoamine boranes, methylamine borane (MeAB), and ethane 1,2 diamine borane (EDAB), known as ammonia borane (AB) carbon derivatives, are synthesized to be used as a solid-state hydrogen storage medium. Thermal dehydrogenation of MeAB and EDAB is performed at 80 °C, 100 °C, and 120 °C under different conditions (self, catalytic, and hydro-catalytic) for hydrogen production and compared with AB. For this purpose, a cobalt-doped activated carbon (Co-AC) catalyst is fabricated. The physicochemical properties of Co-AC catalyst is investigated by well-known techniques such as ATR/FT-IR, XRD, XPS, ICP-MS, BET, and TEM. The synthesized Co-AC catalyst obtained in nano CoOOH structure (20 nm, 12% Co wt) is formed and well-dispersed on the activated carbon support. It has indicated that Co-AC exhibits efficient catalytic activity towards organoamine boranes thermal dehydrogenation. Hydrogen release tests show that hydro-catalytic treatment improves the thermal dehydrogenation kinetics of neat MeAB, EDAB, and AB. Co-AC catalyzed hydro-treatment for thermal dehydrogenation of MeAB and EDAB acceleras the hydrogen release from 0.13 mL H2/min to 46.12 mL H2/min, from 0.16 mL H2/min to 38.06 mL H2/min, respectively at 80 °C. Moreover, hydro-catalytic treatment significantly lowers the H2 release barrier of organoamine boranes thermal dehydrogenation, from 110 kJ/mol to 19 kJ/mol for MeAB and 130 kJ/mol to 21 kJ/mol for EDAB. In conclusion, hydro and catalytic treatment presents remarkable synergistic effect in thermal dehydrogenation and improves the hydrogen release kinetics.  相似文献   

12.
This study conducted the utilization of vegetable residues by an enriched microflora inoculum to produce biohydrogen via anaerobic batch reactor. Dark fermentation processes were carried out with 3 kinds of vegetable residue substrates including broccoli (Brassica oleracea var. italica.), onion (Alium cepa Linn.), and sweet potato (Ipomoea batatas (L.) Lam). Vegetable wastes were pretreated into 2 forms, i.e. mashed and powdered vegetable, prior to the fermentation. The substrate used for the biohydrogen production were vegetable residues and inoculum at the vegetable residues/inoculum ratio of 1:1 (based on TS). The digestion processes were performed under 120 rpm speed of shaking bottle in the incubator with control temperature of 35?C. In this work, the maximum hydrogen production was achieved by anaerobic digestion at mashed onion with bioreactor inoculum that produced total hydrogen of 424.1 mL H2 with hydrogen yield and hydrogen concentration of 151.67 mL H2/g VSadded and 43.54%, respectively. In addition, the hydrogen production continues took only 7 days for the vegetables blended with the bioreactor inoculum. Finally, it was found that the high potential of degradation of vegetable wastes an enriched microflora in dark fermentation also showed alternative solution to eliminate agricultural wastes to produce green energy.  相似文献   

13.
Steam reforming of natural gas produces the majority of the world's hydrogen (H2) and it is considered as a cost-effective method from a product yield and energy consumption point of view. In this work, we present a simulation and an optimization study of an industrial natural gas steam reforming process by using Aspen HYSYS and MATLAB software. All the parameters were optimized to successfully run a complete process including the hydrogen production zone units (reformer reactor, high temperature gas shift reactor HTS and low temperature gas shift reactor LTS) and the purification zone units (absorber and methanator). Optimum production of hydrogen (87,404 MT/year) was obtained by fixing the temperatures in the reformer and the gas shift reactors (HTS & LTS) at 900 °C, 500 °C and 200 °C respectively while maintaining a pressure of 7 atm, and a steam to carbon ratio (S/C) of 4. Moreover, ~99% of the undesired CO2 and CO gases were removed in the purification zone and a reduction of energy consumption of 77.5% was reached in the heating and cooling units of the process.  相似文献   

14.
The hydrogen (H2) fermentative Clostridium hydrogenum sp. nov. strain CUEA01 was isolated from a mangrove sediment in Thailand. Genome sequencing and analysis revealed a genome size of 5,501,482 bp that encoded for 3,292 predicted protein coding genes with annotated functional assignments and many genes associated with carbon utilization and H2 evolution. The H2 production performance was evaluated in batch fermentation, and revealed that this strain can grow and produce H2 at a broad range of temperatures (15–40 °C), pH (4–10), and initial glucose concentrations (5–60 g/L). The maximum H2 yield (3.11 molH2/molglucose) was obtained at 37 °C, pH 8, and an initial glucose concentration of 10 g/L. Furthermore, this strain could utilize various carbon sources, including xylose, xylan, starch, mannose, glycerol, and avicel cellulose, amongst others. Additionally, CUEA01 was compatible with agro-industrial wastes and could achieve a maximum CHP of 4639 mL/L and 4024 mL/L from sugarcane molasses and cassava pulp, respectively. This demonstrates that CUEA01 has a potential for H2 fermentation from complex organic wastes since it can secrete enzyme cocktails that consolidate the fermentation process.  相似文献   

15.
Using the right start-up strategy can be vital for successful hydrogen production from thermophilic dark fermentation (55 °C), but it needs to be affordable. Hence, three start-up strategies modifying only influent concentration and temperature were assessed in a reactor fed with cheese whey: (i) high temperature (55 °C) and a high organic loading rate (OLRA - 15 kgCOD m?3 d?1) right at the beginning of the operation; (ii) slowly increasing temperature up to 55 °C using a high OLRA and (iii) slowly increasing temperature and OLRA up to the desired condition. Strategy (iii) increased hydrogen productivity in 39% compared to the others. The combination of high temperature and low pH thermodynamically favored H2 producing routes. Synergy between Thermoanaerobacterium and Clostridium might have boosted hydrogen production. Three reactors of 41 m³ each would be needed to treat 3.4 × 103 m3 year?1 of whey (small-size dairy industry) and the energy produced could reach 14 MWh month?1.  相似文献   

16.
In recent years, the hydrolysis of Al-based composite powders to produce hydrogen has become a hot topic in the field of hydrogen energy research. However, the hydrogen generation products of Al-based alloys have not been reasonably utilized. For this purpose, this study proposed a novel research idea to achieve the integrated design of hydrogen production and thermal energy storage functions of Al-based composite powders. Specifically, Al-Bi-Cu composite powders with stable hydrogen production were taken as research objects. The hydrogen was obtained by the reaction of Al-Bi-Cu alloy powders with H2O for different reaction times, and then the hydrogen generation products were directly sintered at high temperature to obtain Al-Cu alloy based composite phase change thermal energy storage materials. The results indicated that at 50 °C, the hydrogen yield of Al-Bi-Cu alloy powders in 100min, 200min and 400min are 319.9 mL/g, 428.5 mL/g and 665.8 mL/g, respectively. Importantly, the Al-Cu alloy based composite phase change thermal energy storage materials prepared by the hydrogen generation products exhibited an adjustable phase change temperature (577.3 °C ∼ 598.2 °C), high thermal energy storage density (44.1J/g ∼ 153.5J/g), good thermal cycling stability and structural stability.  相似文献   

17.
A simultaneous saccharification and fermentation (SSF) process was applied for thermophilic bio-hydrogen production from lime-pretreated oil palm trunk (OPT) by Thermoanaerobacterium thermosaccharolyticum KKU19. The SSF hydrogen fermentation conditions were optimized to maximize hydrogen yield (HY). Based on Plackett-Burman design, substrate loading and initial pH had significant effects on HY. The substrate loading and initial pH were further optimized using response surface methodology with a central composite design. The optimum conditions were a substrate loading, enzyme loading, inoculum concentration, initial pH and temperature of 4.6%, 10 filter paper unit (FPU)/g-OPT, 10% (v/v), 6.3 and 50 °C, respectively, which yielded the highest HY of 60.22 mL H2/g-OPT. Structural analysis showed that lime pretreatment and SSF decreased the crystallinity of OPT. Methane production was carried out following the hydrogen production to improve the energy yield from OPT. The results showed that methane production increased total energy yield from 0.65 to 11.79 kJ/g-OPT under the optimal conditions.  相似文献   

18.
Hydrogen was produced in a biotrickling filter (BF) packed with perlite and fed with oat straw acid hydrolysate at 30 °C. Inlet chemical oxygen demand (COD) from 1.2 to 35 g/L and hydraulic retention time (HRT) between 24 h and 6 h were assayed. With increasing inlet COD or decreasing HRT, H2 production rate (HPR) increased but H2 production yield (HY) decreased. Maximum HPR of 81.4 mL H2/Lreactor h (3.3 mmol H2/Lreactor h) and HY of 2.9 mol H2/molhexose consumed were found at an inlet COD of 0.05 gCOD/L h (HRT 24 h) and 2.9 gCOD/L h (HRT 12 h), respectively. Maximum hydrogen composition in gas was 45 ± 4% (v/v) with CO2 as balance. Methane was not detected. Maximum HPR and inlet COD used in this work were higher than others reported for reactors with suspended or fixed biomass. However, implementation of strategies for biomass control to avoid reactor clogging is needed.  相似文献   

19.
Hydrogen is a sustainable, renewable and clean energy carrier that meets the increasing energy demand. Pure hydrogen is produced by the hydrolysis of sodium borohydride (NaBH4) using a catalyst. In this study, Ni/TiO2 catalysts were synthesized by the sol-gel technique and characterized by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) methods. The effects of Ni loading ratio (20–40%), catalyst amount (75–200 mg), the concentration of sodium hydroxide (NaOH, 0.25–1 M), initial amount of NaBH4 (75–125 mg) and the reaction temperature (20–60 °C) on hydrogen production performance were examined. The hydrogen yield (100%) and hydrogen production rate (110.87 mL/gcat.min) were determined at the reaction conditions of 5 mL of 0.25 M NaOH, 100 mg NaBH4, 100 mg Ni/TiO2, 60 °C. Reaction order and activation energy were calculated as 0.08 and 25.11 kJ/mol, respectively.  相似文献   

20.
A planar-type metal-semiconductor-metal (MSM) hydrogen sensor forming on the collector layer was employed as an extended base (EB) of the InGaP-GaAs heterojunction bipolar transistors (HBTs). Then, hydrogen sensing transistors integrated were proposed and studied. After introducing sensing properties of the EB-hydrogen sensor, various sensing current gains defined were addressed for our hydrogen sensing transistor. Instead of the base current, N2 and/or hydrogen-containing gases were used as a parameter while measuring common-emitter characteristics of the hydrogen sensing transistor at various temperatures. Experimental results show that maximum sensing base current gains in 1% H2/N2 is 330 at 25 °C while it is enhanced to 1800 at 50 °C, then to 2300 at 80 °C, and finally to 2800 at 110 °C. In contrast, a peak sensing collector current gain is as high as 1.2 × 105 (4.3 × 104) in 1% (0.01%) at 110 °C. In addition, response times obtained from the sensing diode (base) and collector currents in 0.01% H2/N2 are 485 (490) and 745 s at 25 °C. Together with important features including one power supply and low-power consumption, the proposed hydrogen sensing transistor is very promising for applications in detecting hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号