首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this research study, a novel integrated solar based combined, cooling, heating and, power (CCHP) is proposed consisting of Parabolic trough solar collectors (PTSC) field, a dual-tank molten salt heat storage, an Organic Rankine Cycle (ORC), a Proton exchange membrane fuel cell (PEMFC), a Proton exchange membrane electrolyzer (PEME), and a single effect Li/Br water absorption chiller. Thermodynamics and economic relations are used to analyze the proposed CCHP system. The mean of Tehran solar radiation as well as each portion of solar radiation during 24 h in winter is obtained from TRNSYS software to be used in PTSC calculations. A dynamic model of the thermal storage unit is assessed for proposed CCHP system under three different conditions (i.e., without thermal energy storage (TES), with TES and with TES + PEMFC). The results demonstrate that PEMFC has the ability to improve the power output by 10% during the night and 3% at sunny hours while by using TES alone, the overnight power generation is 86% of the power generation during the sunny hours. The optimum operating condition is determined via the NSGA-II algorithm with regards to exergy efficiency and total cost rate as objective functions where the optimum values are 0.058 ($/s) and 80%, respectively. The result of single objective optimization is 0.044 ($/s) for the economic objective in which the exergy efficiency is at its lowest value (57.7%). In addition, results indicate that the amount of single objective optimization based on exergetic objective is 88% in which the total cost rate is at its highest value (0.086 $/s). The scattered distribution of design parameters and the decision variables trend are investigated. In the next step, five different evolutionary algorithms namely NSGA-II, GDE3, IBEA, SMPSO, and SPEA2 are applied, and their Pareto frontiers are compared with each other.  相似文献   

2.
Operation mode of combined cooling heating and power (CCHP) system determines its energetic and environmental performances. This paper analyzes the energy flows of CCHP system and separated production (SP) system. The fuel energy consumptions of CCHP system following electrical demand management (EDM) and thermal demand management (TDM) are deduced respectively. Three indicators: primary energy saving, exergy efficiency and CO2 emission reduction, are employed to evaluate the performances of CCHP system for a commercial building in Beijing, China. The feasibility analysis shows that the performance of CCHP system is strictly dependent upon building energy demands. The selection of CCHP operation modes is systemically based on building loads, CCHP system and local SP system. The calculation results conclude that CCHP system in winter under EDM achieves more benefits than in summer. The sensitivity discussion indicates that the coefficient of performance for cooling and the efficiency of electricity generation are the most sensitive variables to the energetic and environmental performances of CCHP system.  相似文献   

3.
A micro-combined cooling heating and power (CCHP) system integrated with geothermal-assisted methanol reforming and incorporating a proton exchange membrane fuel cell (PEMFC) stack is presented. The novel CCHP system consists of a geothermal-based methanol steam reforming subsystem, PEMFC, micro gas turbine and lithium bromide (LiBr) absorption chiller. Geothermal energy is used as a heat source to drive methanol steam reforming to produce hydrogen. The unreacted methanol and hydrogen are efficiently utilized via the gas turbine and PEMFC to generate electricity, respectively. For thermodynamic and economic analysis, the effects of the thermodynamic parameters (geothermal temperature and molar ratio of water to methanol) and economic factors (such as methanol price, hydrogen price and service life) on the proposed system performance are investigated. The results indicate that the ExUF (exergy utilization factor the exergy utilization factor), TPES (trigeneration primary energy saving) and energy efficiency of the novel system can be reached at 8.8%, 47.24% and 66.3%, respectively; the levelized cost of energy is 0.0422 $/kWh, and the annual total cost saving ratio can be reached at 20.9%, compared with the conventional system. The novel system achieves thermodynamic and economic potential, and provides an alternative and promising way for efficiently utilizing abundant geothermal energy and methanol resources.  相似文献   

4.
This paper reports the development and construction of the novel solar cooling and heating system. The system consists of the thermal energy subsystem and the desiccant cooling subsystem. The system utilizes both the cheaper nighttime electric energy and the free daytime solar energy. The system is conceptualized to produce both cooling during summer daytime and hot water production during winter. Testing and evaluation of the system had been done to determine its operational procedure and performance. Based on the results, the thermal energy subsystem functioned to its expected performance in solar energy collection and thermal storage. The desiccant cooling subsystem reduced both the temperature and the humidity content of the air using solar energy with a minimal amount of back-up electric energy. The system however, needs further investigation under real conditions.  相似文献   

5.
李莹莹  张兴梅 《节能技术》2012,30(6):483-488
介绍了冷热电联供(CCHP)系统,以上海某示范性微燃机冷热电联供系统为研究对象,通过建立系统主要设备的数学模型,模拟分析了系统在不同环境温度下的性能和系统全年的运行工况。结果表明:微燃机冷热电联供系统的性能受环境温度的影响,系统过渡季节不运行时年平均能源综合利用率可达到70%以上。  相似文献   

6.
The performance of a photovoltaic solar assisted heat pump (PV-SAHP) with variable-frequency compressor is reported in this paper. The system is a direct integration of photovoltaic/thermal solar collectors and heat pump. The solar collectors extract the required thermal energy from the heat pump and at the same time, the cooling effect of the refrigerant lowers the working temperature of the solar cells. So this combined system has a relatively high thermal performance with an improved photovoltaic efficiency. To adapt to the continuously changing solar radiation and ambient temperature conditions, the refrigerant mass flow rate should match the heat gain at the evaporator accordingly. A variable-frequency compressor and an electricity-operated expansion valve were used in the proposed system. Mathematical models were developed to evaluate the energy performance of the combined system based on the weather conditions of Tibet. The simulation results indicated that on a typical sunny winter day with light breeze, the average COP could reach 6.01, and the average electricity efficiency, thermal efficiency and overall efficiency were 0.135, 0.479 and 0.625 respectively.  相似文献   

7.
小型燃气轮机CCHP系统变工况性能入口加热调控研究   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种利用冷热电联产系统(CCHP)低温烟气与环境空气混和加热控制压气机入口温度,提升燃气轮机冷热电系统变工况性能的方法,并以1.9 MW小型燃气轮机OPRA16为例,建立了CCHP系统模型,分析了调控方法的效果、机理。结果表明,入口混和加热可以有效改善冷热电联产系统变工况下系统性能,并扩展系统节能运行范围。与传统燃料流量调控方法相比,新型调控手段下夏季制冷与冬季供热模式下系统节能率分别提升5.7%和21.6%。  相似文献   

8.
Distributed generation (DG) technologies are environmentally friendly and have low operating costs, and thus, distributed generators are widely used for the energy supplies of buildings. Solar energy used for on‐demand heating of buildings is also a mature technology that is environmentally friendly and inexpensive and has a short recycling life cycle. This paper proposes a high proportion of new energy access–combined cooling, heating, and power (HPNE‐CCHP) system composed of a distributed generator and solar energy heat pump system. To obtain the optimum capacity of the HPNE‐CCHP system, nondominated sorting genetic algorithm‐II (NSGA‐II) was used to optimize the system by considering the life cycle cost (LCC) and life cycle pollutant emissions (LCPE) as the objective functions. A mixed integer economic scheduling model (MIESM) was proposed to make the HPNE‐CCHP system operate more economically. Finally, an HPNE‐CCHP system was constructed for a building in Northern China. The simulation results show that an HPNE‐CCHP system with a moderate proportion of new energy is more economical and environmentally friendly than a traditional CCHP system. Building occupants, depending on their desired spending, can select the best capacity configuration on the Pareto frontier. Although pollutant emissions will be reduced as the proportion of new energy increases, this type of configuration is expensive.  相似文献   

9.
This paper aims to explore an efficient, cost-effective, and water-saving seasonal cold energy storage technique based on borehole heat exchangers to cool the condenser water in a 10 MW solar thermal power plant. The proposed seasonal cooling mechanism is designed for the areas under typical weather conditions to utilize the low ambient temperature during the winter season and to store cold energy. The main objective of this paper is to utilize the storage unit in the peak summer months to cool the condenser water and to replace the dry cooling system. Using the simulation platform transient system simulation program (TRNSYS), the borehole thermal energy storage (BTES) system model has been developed and the dynamic capacity of the system in the charging and discharging mode of cold energy for one-year operation is studied. The typical meteorological year (TMY) data of Dunhuang, Gansu province, in north-western China, is utilized to determine the lowest ambient temperature and operation time of the system to store cold energy. The proposed seasonal cooling system is capable of enhancing the efficiency of a solar thermal power plant up to 1.54% and 2.74% in comparison with the water-cooled condenser system and air-cooled condenser system respectively. The techno-economic assessment of the proposed technique also supports its integration with the condenser unit in the solar thermal power plant. This technique has also a great potential to save the water in desert areas.  相似文献   

10.
The objective of this study was to simulate a proton-electrolyte membrane fuel cell (PEMFC) system, namely a PEMFC stack, an anode gas supply subsystem, an anode gas-recovery subsystem, a cathode gas supply subsystem, and a tail gas exhaustion subsystem. In addition, this paper presents an analysis of the efficiency of combined heat and power (CHP) systems. MATLAB and Simulink were employed for dynamic simulation and statistical analysis. The rates of active and the passive anode hydrogen recirculation were considered to elucidate the mechanism of hydrogen circulation. When recovery involved diverse recovery mechanisms, the recirculation rate was affected by the pressure at the hydrogen outlet of the PEMFC system. The greater the pressure was at that outlet, the higher the recovery rate was. In the hydrogen recovery system, when the temperature of the hydrogen supply end remained the same, increasing the temperature of the gas supply end increased the efficiency of the fuel cells; fixing the flow of the hydrogen supply end and increasing the temperature of the hydrogen supply end increased the efficiency of the PEMFC system. A calculation of the efficiency of the recovery system indicated that the thermal efficiency of the fuel cells exceeded 35%, the power generation efficiency exceeded 45%, and the efficiency of the CHP system exceeded 80%.  相似文献   

11.
为节约及合理利用能源,提高城市能量总能系统利用率,基于有机朗肯循环(ORC)和冷热电联产(CCHP),提出了一种新型的城市低温地热冷热电联产系统(以下简称ORC-CCHP系统)。根据热力学第一、第二定律,建立了热力学模型,编写计算机程序进行了系统的热力性能分析。结果表明:采用R245fa、LiBr溶液作为ORCCCHP系统循环工质时,选择窄点温差较小蒸发器可获得更高火用效率;增加太阳能集/蓄热系统,提高热流参数,减小换热温差,可进一步提升系统热力学性能;系统分别采用5种不同有机工质时,R236fa使系统的热力性能达到最佳,并在蒸发压力为0. 62 MPa、窄点温差为0 K时,ORC-CCHP系统获得最大净输出功为1 948 kW,系统火用效率为19. 28%,系统火用效率最高值为85. 78%。  相似文献   

12.
As a high-efficiency and eco-friendly way of energy conversion, fuel cell has received much attention in recent years. A novel residential combined cooling, heating and power (CCHP) system, consisting of a biomass gasifier, a proton exchange membrane fuel cell (PEMFC) stack, an absorption chiller and auxiliary equipment, is proposed. Based on the established thermodynamic models, the effects of operating parameters, biomass materials type and moisture content on the system performance are closely investigated. Overall system performance is then compared under four different operating modes. From the viewpoints of energy utilization and CO2 emissions, the CCHP mode has the best performance with corresponding energy efficiency of 57.41% and CO2 emission index of 0.516 ton/MWh. Exergy analysis results suggest that the optimization and transformation on the gasifier and PEMFC stack should be encouraged. Energy and exergy assessments in this research provide pragmatic guidance to the performance improvement of the integrated CCHP systems with PEMFC. This research also achieves a reasonable combination of efficient cogeneration, green hydrogen production and full recovery of low grade waste heat.  相似文献   

13.
The present study evaluates the optimal design of a renewable system based on solar and geothermal energy for power generation and cooling based on a solar cycle with thermal energy storage and an electrolyzer to produce hydrogen fuel for the combustion chamber. The subsystems include solar collectors, gas turbines, an electrolyzer, an absorption chiller, and compressed air energy storage. The solar collector surface area, geothermal source temperature, steam turbine input pressure, and evaporator input temperature were found to be major determinants. The economic analysis of the system showed that the solar subsystem, steam Rankine cycle, and compressed air energy storage accounted for the largest portions of the cost rate. The exergy analysis of the system demonstrated that the solar subsystem and SRC had the highest contributions to total exergy destruction. A comparative case study was conducted on Isfahan, Bandar Abbas, Mashhad, Semnan, and Zanjan in Iran to evaluate the performance of the proposed system at different ambient temperatures and irradiance levels during the year. To optimize the system and find the optimal objective functions, the NSGA-II algorithm was employed. The contradictory objective functions of the system included exergy efficiency maximization and cost rate minimization. The optimal Exergy round trip efficiency and cost rate were found to be 29.25% and 714.25 ($/h), respectively.  相似文献   

14.
The technical, economical and environmental performances of combined cooling, heating and power (CCHP) system are closely dependent on its design and operation strategy. This paper analyzes the energy flow of CCHP system and deduces the primary energy consumption following the thermal demand of building. Three criteria, primary energy saving (PES), annual total cost saving (ATCS), and carbon dioxide emission reduction (CDER) are selected to evaluate the performance of CCHP system. Based on the energy flow of CCHP system, the capacity and operation of CCHP system are optimized by genetic algorithm (GA) so as to maximize the technical, economical and environmental benefits achieved by CCHP system in comparison to separation production system. A numerical example of gas CCHP system for a hotel building in Beijing is given to ascertain the effectiveness of the optimal method. Furthermore, a sensitivity analysis is presented in order to show how the optimal operation strategy would vary due to the changes of electricity price and gas price.  相似文献   

15.
The design and operation of combined cooling, heating and power (CCHP) systems are greatly dependent upon the seasonal atmospheric conditions, which determine thermal and power demands of buildings. This paper presents a mathematical analysis of CCHP system in comparison to separate system. The corresponding primary energy consumption in thermal demand management (TDM) and electrical demand management (EDM) operation modes are deduced. Three relative criteria, primary energy saving (PES), CO2 emission reduction (CO2ER), and annual total cost saving (ATCS) are employed to evaluate the respective performances of CCHP systems for a hypothetical building in five different climate zones from the technical, environmental and economic aspects. The results indicate that CCHP system in TDM mode in the cold area, where the building requires more heating during the year, achieves more benefit over separate system while CCHP system in EDM mode suits the building having stable thermal demand in mild climate zone.  相似文献   

16.
建立了由风能和太阳能作为驱动能源的冷热电联产多能互补系统(DCERs CCHP),包含发电、冷热电联产(CCHP)和辅助供热三个子系统,将该系统与以天然气作为驱动能源的冷热电联产系统(NG CCHP)相对比,建立了能源绩效、环境绩效和经济绩效三个维度评估体系,并以能效最高、成本最小和环境效益最大为目标,构建调度策略优化模型,进行实例仿真。结果表明,与传统的NG CCHP相比,DCERs CCHP具有更好的能源绩效、经济绩效和环境绩效;与其他单目标优化模式相比,综合优化模式下的系统运行效果最佳;NG占比增加将降低项目盈利能力,风电、光伏设备成本降低将提升项目的盈利能力。  相似文献   

17.
中空纤维膜加湿系统能从根本上解决空气加湿过程中气液夹带的问题.通过搭建太阳能驱动的中空纤维膜加热加湿系统试验台并在冬季进行实验测试,分析出太阳能辐射量、空气体积流量和热水体积流量对系统加热加湿性能的影响.研究发现提高太阳能辐射量和空气体积流量对系统的加湿能力和热性能系数均有积极影响,而前者的影响更为显著.为了获得最好的...  相似文献   

18.
In the last decade, no comprehensive numerical and experimental analyses have been performed to find the maximum possible power generation from a concentrated photovoltaic thermal (CPV/T) system by varying the flow rate of the fluid. This paper describes numerical and experimental studies of a U-shaped solar energy collector model of a CPV/T system, with the goal of determining the maximal thermal and electrical power outputs against a specific volumetric flow rate also called an optimum flow rate. The CPV/T system was based on the union of 8 triple junction solar cells, 8 SOG Fresnel lenses, effective dual-axis tracking, and a forced cooling system. Analyses were performed by changing the flow rate of the working fluid at a considered solar irradiation and ambient temperature. The thermal and electrical power outputs also varied with changes in the ambient temperature and available solar radiation. The relatively high value of CPV/T power was observed against the optimum flow rate at a given irradiation and ambient temperature. Analysis of the energy of the U- shaped solar energy collector system was evaluated experimentally. The numerical results and experimental measurements of the U-shaped solar energy collector model showed great harmony, with minimal deviations of <7% between them.  相似文献   

19.
In this paper, performance details and operational benefits of a large scale solar trigeneration system that provides for solar assisted desiccant cooling, heating and hot water generation installed in a teaching institute building have been reported. A two-rotor desiccant system designed for handling 12 000 m3/hr of air was integrated into existing plant to provide a net reduction in energy consumption over the pre-existing heating ventilation and air-conditioning and domestic hot water systems. The system is controlled and monitored by a building management system which has been used to investigate and analyse the typical system behaviour. Heat from solar energy contributed consistently to reduce gas usage for water heating and on an annual basis showed a reduction of 21% of consumed energy. The solar energy contribution for space heating varied over winter months and during some months it was observed to contribute more than 50% of the total energy requirements for space heating. Under suitable ambient conditions, approximately 35% of total building cooling load was met by the solar driven desiccant cooling system. Continuous monitoring has also helped understand some of the operational issues of the system.  相似文献   

20.
A microcontroller based, thermal energy meter cum controller (TEMC) suitable for solar thermal systems has been developed. It monitors solar radiation, ambient temperature, fluid flow rate, and temperature of fluid at various locations of the system and computes the energy transfer rate. It also controls the operation of the fluid-circulating pump depending on the temperature difference across the solar collector field. The accuracy of energy measurement is ±1.5%. The instrument has been tested in a solar water heating system. Its operation became automatic with savings in electrical energy consumption of pump by 30% on cloudy days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号