首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unlike steam and gas cycles, the Kalina cycle system can utilize low-grade heat to produce electricity with water-ammonia solution and other mixed working fluids with similar thermal properties. Concentrated photovoltaic thermal systems have proven to be a technology that can be used to maximize solar energy conversion and utilization. In this study, the integration of Kalina cycle with a concentrated photovoltaic thermal system for multigeneration and hydrogen production is investigated. The purpose of this research is to develop a system that can generate more electricity from a solar photovoltaic thermal/Kalina system hybridization while multigeneration and producing hydrogen. With this aim, two different system configurations are modeled and presented in this study to compare the performance of a concentrated photovoltaic thermal integrated multigeneration system with and without a Kalina system. The modeled systems will generate hot water, hydrogen, hot air, electricity, and cooling effect with photovoltaic cells, a Kalina cycle, a hot water tank, a proton exchange membrane electrolyzer, a single effect absorption system, and a hot air tank. The environmental benefit of two multigeneration systems modeled in terms of carbon emission reduction and fossil fuel savings is also studied. The energy and exergy efficiencies of the heliostat used in concentrating solar radiation onto the photovoltaic thermal system are 90% and 89.5% respectively, while the hydrogen production from the two multigeneration system configurations is 10.6 L/s. The concentrated photovoltaic thermal system has a 74% energy efficiency and 45.75% exergy efficiency, while the hot air production chamber has an 85% and 62.3% energy and exergy efficiencies, respectively. Results from this study showed that the overall energy efficiency of the multigeneration system increases from 68.73% to 70.08% with the integration of the Kalina system. Also, an additional 417 kW of electricity is produced with the integration of the Kalina system and this justifies the importance of the configuration. The production of hot air at the condensing stage of the photovoltaic thermal/Kalina hybrid system is integral to the overall performance of the system.  相似文献   

2.
Hydrogen is seen as a promising and inevitable energy carrier in the transition towards a carbon-free energy era. This study reviews the potential for carbon-free hydrogen production, utilisation and exportation from the State of Qatar. The study aims to introduce a roadmap for current and future exploration of carbon-free hydrogen production and exportation from Qatar, for which an assessment of several available alternatives for the production of hydrogen in Qatar is performed. These alternatives include the use of natural gas as a feedstock for hydrogen production through steam methane reforming (SMR), solar integrated steam methane reforming with carbon capture, as well as the possibilities for hydrogen production from electrolysis using renewables and ammonia as another intermediate. The potential of each alternative is reviewed based on selected technical, economic and environmental criteria. The findings of this review study indicate that the production and exportation of blue ammonia currently present the best pathway for Qatar, while green hydrogen is expected to become as competitive as blue ammonia in the mid-future. It is widely accepted that as the technologies associated with clean hydrogen production improve, and the cost of renewable energy falls, green hydrogen will become quite competitive in the region.  相似文献   

3.
We are in an era where everything is now requested to be smart. Here are some examples, such as smart materials smart devices, smartphones, smart grid, and smart metering. In regard to energy portfolio, we need to make it in line with these under smart energy solutions. With the developed cutting-edge technologies and artificial intelligence applications, we need to change the course of action in dealing with energy matters by covering the entire energy spectrum under five categories, namely, energy fundamentals and concepts, energy materials, energy production, energy conversion, and energy management. It is important to highlight the importance of a recent event. On 17 January 2017 a total of thirteen leading energy, transport and industry companies in the World Economic Forum in Davos (Switzerland) have launched a global initiative, so-called: Hydrogen Council, to voice a united vision and long-term ambition for hydrogen to foster the energy transition. It has aimed to join the global efforts in promoting hydrogen to help meet climate goals. This is a clear indication that smart solutions are not possible without hydrogen options. This study focuses on introducing and highlighting smart energy solutions under the portfolio pertaining to exergization, greenization, renewabilization, hydrogenization, integration, multigeneration, storagization, and intelligization. Each one of these plays a critical role within the smart energy portfolio and becomes key for a more sustainable future. This study also focuses on the newly developed smart energy systems by combining both renewable energy sources and hydrogen energy systems to provide more efficient, more cost-effective, more environmentally benign and more sustainable solutions for implementation. Furthermore, a wide range of integrated systems is presented to illustrate the feasibility and importance such a coupling to overcome several technical issues. Moreover, numerous studies from the recent literature are presented to highlight the importance of sustainable hydrogen production methods for a carbon-free economy.  相似文献   

4.
In this paper, the energy, exergy, economic, environmental, steady-state, and process performance modeling/analysis of hybrid renewable energy (RE) based multigeneration system is presented. Beyond the design/performance analysis of an innovative hybrid RE system, this study is novel as it proposes a new methodology for determining the overall process energy and exergy efficiency of multigeneration systems. This novel method integrates EnergPLAN simulation program with EES and Matlab. It considers both the steady-state and the process performance of the modeled system on hourly timesteps in order to determine the overall efficiencies. Based on the proposed new method, it is observed that the overall process thermodynamic efficiencies of a hybrid renewable energy-based multigeneration system are different from its steady-state efficiencies. The overall energy and exergy efficiencies reduce from 81.01% and 52.52% (in steady-state condition) to 58.6% and 39.33% (when considering a one-year process performance). The integration of the hot water production with the multigeneration system enhanced the overall thermodynamic efficiencies in steady-state conditions. The Kalina system produces a total work output of 1171 kW with a thermal and exergy efficiency of 12.23% and 52% respectively while the wind turbine system produces 1297 kW of electricity in steady-state condition and it has the same thermal/exergy efficiency (72%). The economic analysis showed that the Levelized cost of electricity (LCOE) of the geothermal energy-based Kalina system is 0.0103 $/kWh. The greenhouse gas emission reduction analysis showed that the proposed system will save between 1,411,480 kg/yr and 3,518,760 kg/yr of greenhouse gases from being emitted into the atmosphere yearly. The multigeneration system designed in this study will produce electricity, hydrogen, hot water, cooling effect, and freshwater. Also, battery electric vehicle charging is integrated with process performance analysis of the multigeneration system.  相似文献   

5.
The collective endeavor in reaching net-zero emissions by 2050 and halting the impending effects of global warming has found a promising solution-hydrogen, a clean energy carrier with diversified applications. It is practical to transition H2 production at scale from fossil fuels to renewable sources. The choice of appropriate hydrogen production route from renewables would regionally vary, depending on various factors. While a majority of the developed countries have kickstarted their transition towards a hydrogen economy, developing countries like Bangladesh have been lagging. This review explores the potential of a hydrogen-based energy system for Bangladesh - commencing with a technological comparison of existing production paths from renewable resources; then moving on to a preliminary analysis of its available resources and technology options. Finally, a roadmap toward a hydrogen economy is envisioned, as the foundation for further study and public policy initiatives aimed at hastening Bangladesh's transition to a carbon-free energy system.  相似文献   

6.
氢能与燃料电池能源系统   总被引:4,自引:1,他引:3  
基于对世界能源需求、氢能的特点和应用的分析,论证了氢能作为替代能源和未来主要能源构成的现实性;通过对氢气制备与储存技术和燃料电池技术进展的简要分析,论证了氢能利用的可行性;介绍了三种燃料电池能源系统;简论了氢经济转化的主要障碍是燃料电池技术发展和氢能基础设施建设。  相似文献   

7.
In this paper, a new geothermal-based multigeneration system is designed and investigated in both thermodynamic and economic analyses. The reason to select the geothermal source is that geothermal power is a renewable and sustainable power resource, and also it is not weather dependent. The proposed geothermal-based multigeneration plant is able to produce power, heating, cooling, swimming pool heating, and hydrogen. The main idea in this renewable-based multigeneration system is to create valuable products by using waste heat of subsystems. Then, by applying thermodynamic analyses, the energy and exergy performances of proposed multigeneration system are computed. Also, parametric work has been performed in order to see the impacts of the reference temperature, geothermal fluid temperature, and geothermal water mass flow rate. Finally, exergo-economic analysis based on exergy destruction or thermodynamic losses is done to gain more information about the system and to evaluate it better. According to the calculations, the overall plant's energy and exergy performances are 32.28% and 25.39%. Economic analysis indicates that hydrogen production cost can be dropped down to 1.06 $/kg H2.  相似文献   

8.
A renewable energy based integrated system is developed to meet the total energy demands of a house located off-grid, and a thermodynamic analysis through energy and exergy methodologies is conducted for analysis, evaluation, and performance assessment. The present novel multigeneration system is mainly driven through the animal residues produced at the farm house. The proposed novel system is composed of nine main units namely, a biomass combustor, photovoltaic (PV) panels, parabolic solar trough collectors, thermoelectric generators, organic Rankine cycle, electrolyzer, homogeneous charged compression ignition (HCCI) engine, absorption chiller, and reverse osmosis (RO) unit. Biomass combustor runs an organic Rankine turbine for additional power during peak loads. The exhaust of gas turbine generates cooling to meet the cooling demand of the residential area of the farm house. PV panels are incorporated to generate hydrogen through electrolyzer. A HCCI engine generates power to compensate peak load as well as charging the farming vehicles of the farm house. The RO unit with energy recovery Pelton turbine produces fresh water for farming and residential use. The advanced integration of subsystems, thermoelectric generators and efficient utilization of waste, improves significant amount of energetic and exergetic efficiencies of overall multigenerational system. The energy and exergy efficiencies are enhanced in the order of 4.8% and 6.3%, respectively, after incorporating innovative cooling system to the PV modules. The overall energy and exergy efficiencies of the proposed multigeneration system with and without thermoelectric are found to be 67.6% and 57.1%, and 68.9% and 58.4%, respectively.  相似文献   

9.
In this study, a novel geothermal-based multigeneration system is designed and evaluated in energy, exergy and economic (3E) analyses. Besides 3E analyses, multi-objective optimization has been assessed to reach the highest exergetic effectiveness and the lowest total cost rate. To evaluate the designed plant, thermodynamic balance equations are assigned to all sub-systems found in the design. These equations are solved by using Engineering Equation Solver (EES) software. According to the analyses' results, with base parameters, total power production is 1951 kW, the hydrogen generation rate is 0.0015 kg/s, and the whole energy and exergy efficiencies are 59.53% and 53.17%. The economic analysis performed for the multigeneration system indicates that the total cost rate is 186 $/h, and the levelized energy cost is 0.102 $/kWh. These results indicate that the designed geothermal-based multigeneration system performs better than a single-generation plant in terms of efficiency and cost.  相似文献   

10.
In this article, a thermodynamic investigation of solar power tower assisted multigeneration system with hydrogen production and liquefaction is presented for more environmentally-benign multigenerational outputs. The proposed multigeneration system is consisted of mainly eight sub-systems, such as a solar power tower, a high temperature solid oxide steam electrolyzer, a steam Rankine cycle with two turbines, a hydrogen generation and liquefaction cycle, a quadruple effect absorption cooling process, a drying process, a membrane distillation unit and a domestic hot water tank to supply hydrogen, electrical power, heating, cooling, dry products, fresh and hot water generation for a community. The energetic and exergetic efficiencies for the performance of the present multigeneration system are found as 65.17% and 62.35%, respectively. Also, numerous operating conditions and parameters of the systems and their effects on the respective energy and exergy efficiencies are investigated, evaluated and discussed in this study. A parametric study is carried out to analyze the impact of various system design indicators on the sub-systems, exergy destruction rates and exergetic efficiencies and COPs. In addition, the impacts of varying the ambient temperature and solar radiation intensity on the irreversibility and exergetic performance for the present multigeneration system and its components are investigated and evaluated comparatively. According to the modeling results, the solar irradiation intensity is found to be the most influential parameter among other conditions and factors on system performance.  相似文献   

11.
A sustainable, balanced energy portfolio is necessary for a country's continued economic growth. This portfolio must collectively be able to provide reliable, resilient electricity at stable, affordable prices. Nuclear energy is an important contributor to global clean energy supply, both as a primary source and by complementing and enabling other clean energy sources. As we look to the design and operation of future energy systems, we see an increasing need to think differently about how we utilize our energy resources to meet all of our energy needs—not just electricity but also industrial and transportation demands. Resource utilization in light of a broader desire to reduce environmental impacts leads us to consider transforming how we use nuclear energy, which currently provides more than half of the nonemitting electricity generated in the United States. A paradigm shift is required to develop optimal energy generation and use configurations that embrace novel approaches to system integration and process design. The US Department of Energy (DOE) Office of Nuclear Energy (NE) program on Integrated Energy Systems (IES)—formerly the Nuclear-Renewable Hybrid Energy Systems (N-R HES) program—was established to evaluate potential options for the coordinated use of nuclear and renewable energy generators to meet energy demands across the electricity, industrial, and transportation sectors. These formerly independent sectors are becoming increasingly linked through technology advances in data acquisition, communications, demand response approaches, and control technologies. Advanced modeling and simulation tools can be employed to design systems that better coordinate across these sectors. Implementation of integrated multi-input, multi-output energy systems will allow for expanded use of nuclear energy beyond the grid in a manner that complements the increased build-out of variable renewable energy generation. These integrated systems would provide enhanced flexibility while also providing energy services and supporting the production of additional, nonelectric commodities (eg, potable water, hydrogen, and liquid fuels) via excess thermal and electrical energy from the nuclear system. Increased flexibility of traditionally baseload nuclear systems will support energy security, grid reliability, and grid resilience while maximizing the use of clean energy technologies. This paper provides an overview of current efforts in the United States that assess the potential to increase utilization of nuclear energy systems, in concert with renewable energy generation, via the IES program. Analysis tools and approaches and preliminary analysis results are summarized, and planned experimental activities to demonstrate integrated system performance are introduced.  相似文献   

12.
Hydrogen is widely used in many industries, yet its role in the clean energy transition goes beyond being an element of these industries. Near-term practical large-scale clean hydrogen production can be made available by involving nuclear, solar, and other renewable energy sources in the process of hydrogen production, and coupling their energy systems to sustainable carbon-free hydrogen technologies. This requires further investigation and assessment of the different alternatives to achieve clean hydrogen using these pathways. This paper assesses the technoeconomics of promising hydrogen technologies that can be coupled to nuclear and solar energy systems for large-scale hydrogen production. It also provides an overview of the design, status and advances of these technologies.  相似文献   

13.
Application of energy system models for designing a low-carbon society   总被引:1,自引:0,他引:1  
Rising concern about the effect of greenhouse gas (GHG) emissions on climate change is pushing national governments and the international community to achieve sustainable development in an economy that is less dependent on carbon emitting activities - a vision that is usually termed a “low-carbon society” (LCS). Since the utilization of energy resources is the main source of GHG emissions, restructuring current energy systems in order to incorporate low-carbon energy technologies is essential for the realization of the LCS vision. Energy policies promoting the penetration of these technologies must view the role of energy in society as a system, composed of several energy resources, conversion technologies and energy demand sectors. The feasibility of the LCS in the future can be better understood by means of energy models. Energy models are valuable mathematical tools based on the systems approach. They have been applied to aid decision-making in energy planning, to analyze energy policies and to analyze the implications arising from the introduction of technologies. The design of the LCS requires innovative energy systems considering a trans-disciplinary approach that integrates multi-dimensional elements, related to social, economic, and environmental aspects. This paper reviews the application of energy models considering scenarios towards an LCS under the energy systems approach. The models reviewed consider the utilization of waste for energy, the penetration of clean coal technologies, transportation sector models as a sample of sectoral approaches, and models related to energy-for-development issues in rural areas of developing countries.  相似文献   

14.
As hydrogen fuel cell vehicles move from manifestation to commercialization, the users expect safe, convenient and customer-friendly fuelling. Hydrogen quality affects fuel cell stack performance and lifetime, as well as other factors such as valve operation. In this paper, previous researcher's development on hydrogen as a possible major fuel of the future has been studied thoroughly. Hydrogen is one of the energy carriers which can replace fossil fuel and can be used as fuel in an internal combustion engines and as a fuel cell in vehicles. To use hydrogen as a fuel of internal combustion engine, engine design should be considered for avoiding abnormal combustion. As a result it can improve engine efficiency, power output and reduce NOx emissions. The emission of fuel cell is low as compared to conventional vehicles but as penalty, fuel cell vehicles need additional space and weight to install the battery and storage tank, thus increases it production cost. The production of hydrogen can be ‘carbon-free’ only if it is generated by employing genuinely carbon-free renewable energy sources. The acceptability of hydrogen technology depends on the knowledge and awareness of the hydrogen benefits towards environment and human life. Recent study shows that people still do not have the sufficient information of hydrogen.  相似文献   

15.
This study analyzes a renewable energy‐driven innovative multigeneration system, in which wind and solar energy sources are utilized in an efficient way to generate several useful commodities such as hydrogen, oxygen, desalted water, space cooling, and space heating along with electricity. A 1‐km2 heliostat field is considered to concentrate the solar light onto a spectrum splitter, where the light spectrum is separated into two portions as reflected and transmitted to be used as the energy source in the concentrated solar power (CSP) and concentrated photovoltaics (CPV) receivers, respectively. As such, CSP and CPV systems are integrated. Wind energy is proposed for generating electricity (146 MW) or thermal energy (138 MW) to compensate the energy need of the multigeneration system when there is insufficient solar energy. In addition, multiple commodities, 46 MW of electricity, 12 m3/h of desalted water, and 69 MW of cooling, are generated using the Rankine cycle and the rejected heat from its condenser. Further, the heat generated on CPV cells is recovered for efficient photovoltaic conversion and utilized in the space heating (34 MW) and proton exchange membrane (PEM) electrolyzer (239 kg/h) for hydrogen production. The energy and exergy efficiencies of the overall system are calculated as 61.3% and 47.8%, respectively. The exergy destruction rates of the main components are presented to identify the potential improvements of the system. Finally, parametric studies are performed to analyze the effect of changing parameters on the exergy destruction rates, production rates, and efficiencies.  相似文献   

16.
In order to evaluate the potential of reforming ammonia as a carbon-free fuel in production of hydrogen, a new configuration of a micro reforming system integrated with a micro-combustor is studied experimentally. The micro-combustor as a heat source is a simple cylinder with an annular-type shield that applies a heat-recirculation concept. A micro-reformer to convert ammonia to hydrogen is an annulus, which is effective to transfer heat from the micro-combustor. The annulus-type micro reforming system is designed to produce 1-10 W (based on lower heating value, LHV) of hydrogen using various catalysts. The feed rate of ammonia, the micro-combustor inlet velocity of fuel-air mixtures and the catalyst materials substantially affect the performance of the designed micro reforming system. Under optimized design and operating conditions, the micro reforming system using ruthenium as a catalyst produces 5.4 W (based on LHV) of hydrogen with a conversion rate of 98.0% and an overall system efficiency of 13.7%. Thus, the present configuration can be applied to practical micro reforming systems, supporting the potential of using ammonia as a clean fuel.  相似文献   

17.
Rising concerns about the dependence of modern energy systems on fossil fuels have raised the requirement for green alternate fuels to pave the roadmap for a sustainable energy future with a carbon-free economy. Massive expectations of hydrogen as an enabler for decarbonization of the energy sector are limited by the lack of required infrastructure, whose implementation is affected by the issues related to the storage and distribution of hydrogen energy. Ammonia is an effective hydrogen energy carrier with a well-established and mature infrastructure for long-distance transportation and distribution. The possibility for green ammonia production from renewable energy sources has made it a suitable green alternate fuel for the decarbonization of the automotive and power generation sectors. In this work, engine characteristics for ammonia combustion in spark ignition engines have been reported with a detailed note on engines fuelled with pure ammonia as well as blends of ammonia with gasoline, hydrogen, and methane. Higher auto-ignition temperature, low flammability, and lower flame speed of ammonia have a detrimental effect on engine characteristics, and it could be addressed either by incorporating engine modifications or by enhancing the fuel quality. Literature shows that the increase in compression ratio from 9.4:1 to 11.5:1 improved the maximum power by 59% and the addition of 10% hydrogen in supercharged conditions improved the indicated efficiency by 37%. Challenges and strategies for the utilization of ammonia as combustible fuel in engines are discussed by considering the need for technical advancements as well as social acceptance. Energy efficiency for green ammonia production is also discussed with a due note on techniques for direct synthesis of ammonia from air and water.  相似文献   

18.
The planning of a hydrogen infrastructure with production facilities, distribution chains, and refuelling stations is a hard task. Difficulties may rise essentially in the choice of the optimal configurations. An innovative design of hydrogen network has been proposed in this paper. It consists of a network of green hydrogen refuelling stations (GHRSs) and several production nodes. The proposed model has been formulated as a mathematical programming, where the main decisions are the selection of GHRSs that are powered by the production nodes based on distance and population density criteria, as well the energy and hydrogen flows exchanged among the system components from the production nodes to the demand points. The approaches and methodologies developed can be taken as a support to decision makers, stakeholders and local authorities in the implementation of new hydrogen infrastructures. Optimal configurations have been reported taking into account the presence of an additional hydrogen industrial market demand and a connection with the electrical network. The main challenge that has been treated within the paper is the technical feasibility of the hydrogen supply chain, that is mainly driven by uncertain, but clean solar and wind energy resources. Using a Northern Italian case study, the clean hydrogen produced can be technically considered feasible to supply a network of hydrogen refuelling stations. Results show that the demands are satisfied for each time period and for the market penetration scenarios adopted.  相似文献   

19.
While the dominant role of hydrogen in a sustainable energy future is widely accepted, the strategies for the transition from fossil-based to hydrogen economy are still actively debated. This paper emphasizes the role of carbon-neutral technologies and fuels during the transition period. To satisfy the world's growing appetite for energy and keep our planet healthy, at least 10 TW (or terawatt) of carbon-free power has to be produced by mid-century. Three prominent options discussed in the literature include: decarbonization of fossil energy, nuclear energy and renewable energy sources. These options are analyzed in this paper with a special emphasis on the role of hydrogen as a carbon-free energy carrier. In particular, the authors compare various fossil decarbonization strategies and evaluate the potential of nuclear and renewable energy resources to meet the 10 TW target. An overview of state-of-the-art technologies for production of carbon-free energy carriers and transportation fuels, and the assessment of their commercial potential is provided. It is shown that neither of these three options alone could provide 10 TW of carbon-neutral power without major changes in the existing infrastructure, and/or technological breakthroughs in many areas, and/or a considerable environmental risk. The authors propose a scenario for the transition from current fossil-based to hydrogen economy that includes two key elements: (i) changing the fossil decarbonization strategy from one based on CO2 sequestration to one that involves sequestration and/or utilization of solid carbon, and (ii) producing carbon-neutral synthetic fuels from bio-carbon and hydrogen generated from water using carbon-free sources (nuclear, solar, wind, geothermal). This strategy would allow taking advantage of the existing fuel infrastructure without an adverse environmental impact, and it would secure a smooth carbon-neutral transition from fossil-based to future hydrogen economy.  相似文献   

20.
In order to meet the energy and fuel needs of societies in a sustainable way and hence preserve the environment, there is a strong need for clean, efficient and low-emission energy systems. In this regard, it is aimed to generate cleaner energy outputs, such as electricity, hydrogen and ammonia as well as some additional useful commodities by utilizing both methane gas and the waste heat of an integrated unit to the whole system. In this paper, a novel multi-generation plant is proposed to generate power, hydrogen and ammonia as a chemical fuel, drying, freshwater, heating, and cooling. For this reason, the Brayton cycle as prime unit using methane gas is integrated into the s-CO2 power cycle, organic Rankine cycle, PEM electrolyzer, freshwater production unit, cooling cycle and dryer unit. In order then to evaluate the designed integrated multigeneration system, thermodynamic analyses and parametric studies are performed, revealing that the energy and exergy efficiencies of the whole plant are found to be 69.08% and 65.42%. In addition, ammonia and hydrogen production rates have been found to be 0.2462 kg/s and 0.0631 kg/s for the methane fuel mass flow rate of 1.51 kg/s. Also, the effects of the reference temperature, pinch point temperature of superheater, combustion chamber temperature, gas turbine input pressure, and mass flow rate of fuel on numerous parameters and performance of the plant are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号