首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of cheap, efficient, and active non-noble metal electrocatalysts for total hydrolysis of water (oxygen evolution reaction (OER) and hydrogen evolution reaction (HER)) is of great significance to promote the application of water splitting. Herein, a heterogeneous structured electrode based on FeAlCrMoV high-entropy alloy (HEA) was synthesized as a cost-effective electrocatalyst for hydrogen and oxygen evolution reactions in alkaline media. In combination of the interfacial synergistic effect and the high-entropy coordination environment, flower-like HEA/MoS2/MoP exhibited the excellent HER and OER electrocatalytic performance. It showed a low overpotential of 230 mV at the current density of 10 mA cm−2 for OER and 148 mV for HER in alkaline electrolyte, respectively. Furthermore, HEA/MoS2/MoP as both anode and cathode also exhibited an overpotential of 1.60 V for overall water splitting. This work provides a new strategy for heterogeneous structure construction and overall water splitting based on high-entropy alloys.  相似文献   

2.
It is of great significance to develop a highly active, durable and inexpensive bifunctional electrocatalyst for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we report a tungsten-doped nickel phosphide nanosheets based on carbon cloth (W–Ni2P NS/CC) as an efficient bifunctional catalyst through simple hydrothermal and phosphorization for overall water splitting in 1 M KOH. The W–Ni2P NS/CC exhibits excellent electrochemical performance with low overpotentials for HER (η10 = 71 mV, η50 = 160 mV) and OER (η20 = 307 mV, η50 = 382 mV) in 1 M KOH, as well as superior long-term stability. Moreover, W–Ni2P NS/CC as a bifunctional catalyst reveals remarkable activity with a low voltage of 1.55 V to reach a current density of 20 mA cm−2. This work provides a viable bifunctional catalyst for the overall water splitting.  相似文献   

3.
Developing highly active, stable and sustainable electrocatalysts for overall water splitting is of great importance to generate renewable H2 for fuel cells. Herein, we report the synthesis of electrocatalytically active, nickel foam-supported, spherical core-shell Fe-poly(tetraphenylporphyrin)/Ni-poly(tetraphenylporphyrin) microparticles (FeTPP@NiTPP/NF). We also show that FeTPP@NiTPP/NF exhibits efficient bifunctional electrocatalytic properties toward both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Electrochemical tests in KOH solution (1 M) reveal that FeTPP@NiTPP/NF electrocatalyzes the OER with 100 mA cm−2 at an overpotential of 302 mV and the HER with 10 mA cm−2 at an overpotential of 170 mV. Notably also, its catalytic performance for OER is better than that of RuO2, the benchmark OER catalyst. Although its catalytic activity for HER is slightly lower than that of Pt/C (the benchmark HER electrocatalyst), it shows greater stability than the latter during the reaction. The material also exhibits electrocatalytic activity for overall water splitting reaction at a current density of 10 mA cm−2 with a cell voltage of 1.58 V, along with a good recovery property. Additionally, the work demonstrates a new synthetic strategy to an efficient, noble metal-free-coordinated covalent organic framework (COF)-based, bifunctional electrocatalyst for water splitting.  相似文献   

4.
Herein, strongly coupled Ni3S2/MoS2 hollow spheres derived from NiMo-based bimetal-organic frameworks are successfully synthesized for overall water splitting via a one-pot solvothermal method followed by sulfurization. A well-defined hollow spherical structure with a heterointerface between Ni3S2 and MoS2 is constructed using solvothermal and sulfurization processes. Owing to their bimetallic heterostructure, porous hollow carbon structure with large surface area, and numerous exposed active sites, the Ni3S2/MoS2 hollow spheres are found to be efficient electrocatalysts for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The heterostructured Ni3S2/MoS2 hollow spheres show small overpotentials of 303 and 166 mV to reach a current density of 10 mA cm?2 for the OER and HER in 1.0 M KOH, respectively. Furthermore, an overall water-splitting electrolyzer consisting of the Ni3S2/MoS2 hollow spheres as both the anode and cathode requires a very low cell voltage of 1.62 V to drive a current density of 10 mA cm?2 with outstanding long-term stability for 100 h. Our findings offer a new pathway for the design and synthesis of electrochemically advanced bifunctional catalysts for various energy storage and conversion applications.  相似文献   

5.
In order to solve the problem of large overpotential in water electrolysis for hydrogen production, transition metal sulfides are promising bifunctional electrocatalysts for hydrogen evolution reaction/oxygen evolution reaction that can significantly reduce overpotential. In this work, Ni3S2 and amorphous MoSx nanorods directly grown on Ni foam (Ni3S2-MoSx/NF) were prepared via one-step solvothermal process, which were used as a high-efficient electrocatalyst for overall water splitting. The Ni3S2-MoSx/NF composite exhibits very low overpotentials of 65 and 312 mV to reach 10 mA cm−2 and 50 mA cm−2 in 1.0 M KOH for HER and OER, respectively. Besides, it exhibits a low Tafel slope (81 mV dec−1 for HER, 103 mV dec−1 for OER), high exchange current density (1.51 mA cm−2 for HER, 0.26 mA cm−2 for OER), and remarkable long-term cycle stability. This work provides new perspective for further the development of highly effective non-noble-metal materials in the energy field.  相似文献   

6.
It is great important to develop and explore a non-precious bifunctional electrocatalyst with high efficiency and good stability for Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) in alkaline electrolyte. Herein, a three-dimensional (3D) needle-like MoS2/NiS heterostructure supported on Nickel Foam (NF) (MoS2/NiS/NF) is synthesized by a simple hydrothermal method for the first time, which can act as a good bifunctional electrocatalyst for overall water splitting. As expected, the optimal MoS2/NiS/NF exhibits excellent catalytic performance with a low overpotential of 87 and 216 mV at 10 mA cm−2 for HER and OER in 1 M KOH electrolyte, respectively, accompanied by good cycle stability. Furthermore, the MoS2/NiS/NF as bifunctional electrocatalyst in an electrolyzer shows high efficiency with a cell voltage of 1.5 V at 10 mA cm−2, as well as superior durability. The present work may open a new direction to design and develop a non-precious bifunctional electrocatalyst with excellent catalytic activity for water splitting in the future.  相似文献   

7.
Developing earth-abundant and highly active bifunctional electrocatalysts are critical to advance sustainable hydrogen production via alkaline water electrolysis but still challenging. Herein, heterojunction hybrid of ultrathin molybdenum disulfide (MoS2) nanosheets and non-stoichiometric nickel sulfide (Ni0.96S) is in situ prepared via a facile one-step hydrothermal strategy, followed by annealing at 400 °C for 1 h. Microstructural analysis shows that the hybrid is composed of intimate heterojunction interfaces between Ni0.96S and MoS2 with exposed active edges provided by ultrathin MoS2 nanosheets and rich defects provided by non-stoichiometric Ni0.96S nanocrystals. As expected, it is evaluated as bifunctional electrocatalysts to produce both hydrogen and oxygen via water electrolysis with a hydrogen evolution reaction (HER) overpotential of 104 mV at 10 mA cm−2 and an oxygen evolution reaction (OER) overpotential of 266 mV at 20 mA cm−2 under alkaline conditions, outperforming most current noble-metal-free electrocatalysts. This work provides a simple strategy toward the rational design of novel heterojunction electrocatalysts which would be a promising candidate for electrochemical overall water splitting.  相似文献   

8.
Developing only Fe derived bifunctional overall water splitting electrocatalyst both for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) while performing at low onset overpotential and with high catalytic stability is a rare instance. We present here the first demonstration of unique iron-oxide nanobeads (FeOx-NBs) based electrocatalyst executing both OER and HER with high activity. Thin-film electrocatalytic FeOx-NBs assembly is surface grown via simple spray coating (SC). The unique SC/FeOx-NBs propels OER initiating water oxidation just at 1.49 VRHE (η = 260 mV) that is the lowest observable onset potential for OER on simple Fe-oxide based catalytic films reported so far. Catalyst also reveals decently high HER activity and competent overall water splitting performance in the FeOx-NBs two-electrode system as well. Catalyst also presents stable kinetics, with promising high electrochemically active surface area (ECSA) of 1765 cm2, notable Tafel slopes of just 54 mV dec1? (OER) and 85 mV dec1? (HER), high exchange current density of 1.10 mA cm2? (OER), 0.58 mA cm2? (HER) and TOF of 74.29s1?@1.58VRHE, 262s1?@1.62VRHE (OER) and 82.5s1?@-0.45VRHE, 681s1?@-0.56VRHE (HER).  相似文献   

9.
The development of bifunctional catalysts that can be applied to both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is widely regarded as a key factor in the production of sustainable hydrogen fuel by electrochemical water splitting. In this work, we present a high-performance electrocatalyst based on nickel-cobalt metal-organic frameworks for overall water splitting. The as-obtained catalyst shows low overpotential to reaches the current density of 10 mA cm−2 with 249 mV for OER and 143 mV for HER in alkaline media, respectively. More importantly, when the electrolyzer was assembled with the as-prepared catalyst as anode and cathode simultaneously, it demonstrates excellent activity just applies a potential of 1.68 V to achieve 10 mA cm−2 current density for overall water splitting.  相似文献   

10.
One of the current necessities to produce clean energy is the logical design of inexpensive noble-metal free electrocatalysts with developed structure and composition for electrochemical water splitting. In this study, we introduce a new core-shell-structured bifunctional electrocatalyst of NU-1000/CuCo2S4 for oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and overall water splitting for the first time. Own to unique structure with rich porosity, high electrical conductivity, high stability and larger density of active sites, this nanocomposite can produce water electrolysis in a 1 M KOH solution. The electrochemical measurements show overpotentials of 335 mV for OER and 93 mV for HER at a current density of 10 mAcm−2. Also, the NU-1000/CuCo2S4 nanocomposite exhibits Tafel slope values of 110 mV dec−1 and 103 mV dec−1 for HER and OER, respectively. Besides, NU-1000/CuCo2S4 presents a significant long-term stability in a 72 h run. Additionally, NU-1000/CuCo2S4 requires 1.55 V to deliver 10 mA cm−2 current density in overall water splitting. According to these results, we hope to use this electrocatalyst in producing oxygen and hydrogen from water.  相似文献   

11.
Constructing efficient bifunctional electrocatalysts for both cathode and anode is of great importance for obtaining green hydrogen by water splitting. Herein, sulfuration of hierarchical Mn-doped NiCo LDH heterostructures (Mn–NiCoS2/NF) is constructed as a bifunctional electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) via a facile hydrothermal-annealing strategy. Mn–NiCoS2/NF shows an overpotential of 310 mV at 50 mA cm−2 for OER and 100 mV at 10 mA cm−2 for HER in 1.0 M KOH. Moreover, only 1.496 V@10 mA cm−2 is required for overall water splitting by using Mn–NiCoS2/NF as catalyst dual electrodes in a two-electrode system. The excellent performance of Mn–NiCoS2/NF should be attributed to the ameliorative energy barriers of adsorption/desorption for HO/H2O through the modification of electronic structure of NiCo basal plane by Mn-doping and the acceleration of water dissociation steps via rich delocalized electron inside sulfur vacancies. The construction of hierarchical Mn–NiCoS2/NF heterostructures provides new prospects and visions into developing efficient-advanced electrocatalysts for overall water splitting.  相似文献   

12.
High performance bifunctional catalysts for water splitting are very promising. Transition metal phosphides as catalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) have attracted considerable attention due to their high performance. However, the catalyst with excellent properties still remains a significant challenge. Herein, the nanoporous NiFeMoP(np-NiFeMoP) ribbon was prepared by quenching and dealloying method. It was found that np-NiFeMoP showed excellent HER and OER performance in 1 M KOH. The overpotential of OER is as low as 197 mV at a current density of 20 mA·cm−2. When the current density is 10 mA·cm−2, the overpotential of HER is 223 mV. Moreover, np-NiFeMoP only needs a cell voltage of 1.41 V when current density is 10 mA·cm−2 for water splitting. Our current work may provide some new insights on rationally constructing nanoporous structure with rich active sites to boost the catalytic performances for overall water splitting.  相似文献   

13.
The construction of cost-effective bifunctional electrocatalysts with the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is significant for efficient overall water splitting. Herein, this work demonstrates a novel strategy for the synthesis of nickel-cobalt oxides/sulfides/phosphides composite (denoted as NiCoO–2P/S) nanoarrays on Ni foam. In this method, Ni–Co bimetallic oxide nanowires on Ni foam were partially phosphorized and sulfurized simultaneously in situ to yield Ni–Co oxide/sulfide/phosphide composite. The NiCoO–2P/S arrays have good interfacial effects and display many holes in the nanowires, giving it the advantage of large accessible surfaces on the nanowires and a beneficial for the release of gas bubbles, resulting in an excellent OER performance with a low overpotential (η) of 254 mV at 100 mA cm?2 and good HER activity (η10 = 143 mV at 10 mA cm?2). The electrocatalytic test results demonstrate small Tafel slopes (82 mV dec?1 for HER, 88 mV dec?1 for OER) and the satisfying durability in an alkaline electrolyte, indicating that the HER and OER activity was enhanced by the introduction of the Ni/Co sulfides and phosphides into Ni–Co oxides composite nanowires. Furthermore, the as-prepared NiCoO–2P/S catalyst can be used as both the anode and the cathode simultaneously to realize overall water splitting in the two-electrode electrolyzer. This system can be driven at low cell voltages of 1.50 and 1.68 V to achieve current densities of 10 and 100 mA cm?2, respectively. This work provides an alternative strategy to prepare high-performance bifunctional electrochemical materials and demonstrates the advantages of Ni–Co oxide/sulfide/phosphide composites for water splitting.  相似文献   

14.
Searching for efficient, stable and low-cost nonprecious catalysts for oxygen and hydrogen evolution reactions (OER and HER) is highly desired in overall water splitting (OWS). Herein, presented is a nickel foam (NF)-supported MoS2/NiFeS2 heterostructure, as an efficient electrocatalyst for OER, HER and OWS. The MoS2/NiFeS2/NF catalyst achieves a 500 mA cm−2 current density at a small overpotential of 303 mV for OER, and 228 mV for HER. Assembled as an electrolyzer for OWS, such a MoS2/NiFeS2/NF heterostructure catalyst shows a quite low cell voltage (≈1.79 V) at 500 mA cm−2, which is among the best values of current non-noble metal electrocatalysts. Even at the extremely large current density of 1000 mA cm−2, the MoS2/NiFeS2/NF catalyst presents low overpotentials of 314 and 253 mV for OER and HER, respectively. Furthermore, MoS2/NiFeS2/NF shows a ceaseless durability over 25 h with almost no change in the cell voltage. The superior catalytic activity and stability at large current densities (>500 mA cm−2) far exceed the benchmark RuO2 and Pt/C catalysts. This work sheds a new light on the development of highly active and stable nonprecious electrocatalysts for industrial water electrolysis.  相似文献   

15.
Exploring cost-effective, high-efficiency and stable electrocatalysts for overall water splitting is greatly desirable and challenging for sustainable energy. Herein, a novel designed Ni activated molybdenum carbide nanoparticle loaded on stereotaxically-constructed graphene (SCG) using two steps facile strategy (hydrothermal and carbonization) as a bifunctional electrocatalyst for overall water splitting. The optimized Ni/Mo2C(1:20)-SCG composites exhibit excellent performance with a low overpotential of 150 mV and 330 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively to obtain a current density of 10 mA cm?2 in 1.0 M KOH solution. In addition, when the optimized Ni/Mo2C(1:20)-SCG composite is used as a bifunctional electrode for overall water splitting, the electrochemical cell required a low cell voltage of 1.68 V at a current density of 10 mA cm?2 and long-term stability of 24 h. More significantly, the synergetic effects between Ni-activated Mo2C nanoparticles and SCG are regarded as a significant contributor to accelerate charge transfer and promote electrocatalytic performance in hybrid electrocatalysts. Our works introduce a novel approach to design advanced bifunctional electrodes for overall water splitting.  相似文献   

16.
The development of non-precious metal-based highly active bi-functional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is critical factor for making water electrolysis a viable process for large-scale industrial applications. In this study, bi-functional water splitting electrocatalysts in the form of nickel-sulfide/nickel nanoparticles integrated into a three-dimensional N-doped porous carbon matrix, are prepared using NaCl as a porous structure-forming template. Microstructures of the catalytic materials are characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and N2 adsorption-desorption analysis. The most active catalyst synthesized in this study exhibits a low HER overpotential of 70 mV at 10 mA cm−2 and a low Tafel slope of 45 mV dec−1. In OER, the optimized sample performs better than a state-of-the-art RuO2 catalyst and produces an overpotential of 337 mV at 10 mA cm−2, lower than that of RuO2. The newly obtained materials are also used as HER/OER electrocatalysts in a specially assembled two-electrode water splitting cell. The cell demonstrates high activity and good stability in overall water splitting.  相似文献   

17.
In this work, we developed ternary metallic cobalt-cobalt nitride-dicobalt phosphide composite embedded in nitrogen and phosphorus co-doped carbon (Co/CoN/Co2P-NPC) as bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The as-prepared Co/CoN/Co2P-NPC is achieved by simultaneous annealing and phosphating of a Co–N rich metal-organic frameworks (MOFs) precursor. Compare with the phosphorus-free Co/CoN embedded nitrogen-doped carbon electrocatalyst (Co/CoN-NC), the as-prepared Co/CoN/Co2P-NPC display superior HER and OER low overpotential of 99 mV and 272 mV at current density of 10 mA cm−2. When Co/CoN/Co2P-NPC electrocatalyst is use as bifunctional catalysts in overall alkaline water splitting, it exhibit excellent behaviour with 10 mA cm−2 current at overall cell potential of 1.60 V. The excellent performance of Co/CoN/Co2P-NPC electrocatalyst is attributed to the phosphating process that could further enhance synergistic effect, create stronger electronic interactions, and form efficient dual heteroatom doping to optimize the interfacial adhesion within the electrocatalyst. This present work will create more opportunities for the development of new, promising and more active sites electrocatalysts for alkaline electrolysis.  相似文献   

18.
Developing cost-effective and remarkable electrocatalysts toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) performs excelling role in boosting the hydrogen energy application. Herein, a novel in-situ one-pot strategy is developed for the first time to synthesize molybdenum carbide nanoparticles (Mo2C NPs) incorporated on nitrogen (N) and phosphorous (P) co-doped stereotaxically carbon (SC). The optimized Mo2C NPs/N, P–SC–800 electrocatalyst exhibits lower overpotentials of 131 and 287 mV for HER and OER to deliver a current density of 10 mA cm?2 in 1.0 M KOH medium with smaller Tafel slopes of 58.9 and 74.4 mV/dec, respectively. In addition, an electrolyzer using Mo2C NPs/N, P–SC–800 electrode as cathode and anode delivers a current density of 10 mA cm?2 at a small voltage of 1.64 V for overall water splitting. The excellent water splitting performance could be ascribed to optimum Mo2C NPs for more accessible active sites, highly active N, P-SC networks for accelerated electron transfers, and synergetic effect between Mo2C NPs and N, P-SC networks. The N, P-SC network not only enhances the overall dispersion of Mo2C NPs but also contributes numerous electroactive edges to enhance the performance of HER, OER, and overall water splitting activity. This research work explores the in-situ one-step strategies of advanced, cost-effective, and non-precious metal electrocatalysts for efficient water splitting and motivates the consideration of a novel class of heteroatom doped stereotaxically carbon nanocomposites for sustainable energy production.  相似文献   

19.
Developing efficient and cost-effective transition metal-based electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial to generate clean and renewable hydrogen energy. The construction of hybrid catalysts with multiple active sites is an effective approach to promote catalytic performance. Herein, a molybdenum disulfide (MoS2)-based hybrid with N-doped carbon wrapped CoFe alloy (MoS2/CoFe@NC) was synthesized through a typical hydrothermal method. The MoS2/CoFe@NC exhibits excellent electrocatalytic performance with overpotentials of 172 mV for HER and 337 mV for OER at 10 mA cm−2, and long-term stability of 24-h electrolytic reaction in 1 M KOH solution. The chemical coupling between MoS2 and CoFe@NC provides improved electronic structures and more accessible active sites. The CoFe@NC substrate accelerates the charge transfer to MoS2 through a synergistic effect. This work demonstrates that the CoFe@NC is a promising substrate for depositing MoS2 nanosheets (NSs) to achieve excellent catalytic performance for both HER and OER.  相似文献   

20.
The exploration of highly efficient non-precious electrocatalysts is essential for water splitting devices. Herein, we synthesized CoS2–MoS2 multi-shelled hollow spheres (MSHSs) as efficient electrocatalysts both for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using a Schiff base coordination polymer (CP). Co-CP solid spheres were converted to Co3O4 MSHSs by sintering in air. CoS2–MoS2 MSHSs were obtained by a solvothermal reaction of Co3O4 MSHSs and MoS42− anions. CoS2–MoS2 MSHSs have a high specific surface area of 73.5 m2g-1. Due to the synergistic effect between the CoS2 and MoS2, the electrode of CoS2–MoS2 MSHSs shows low overpotential of 109 mV with Tafel slope of 52.0 mV dec−1 for HER, as well as a low overpotential of 288 mV with Tafel slope of 62.1 mV dec−1 for OER at a current density of 10 mA cm−2 in alkaline solution. The corresponding two-electrode system needs a potential of 1.61 V (vs. RHE) to obtain anodic current density of 10 mA cm−2 for OER and maintains excellent stability for 10 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号