共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2019,44(56):29561-29567
Methane (CH4) production from palm oil mill effluent (POME) pre-treated by ozonation was conducted under mesophilic (37 °C) condition. The results demonstrated that methane can be produced from both non-ozonated and ozonated POME at a concentration range of 3,000 to 15,000 mg COD L−1. Methane yield rised 54% when POME was pre-treated by ozonation at POME concentration of 15,000 mg COD L−1. The methane yield increased the POME concentration was increased. At POME above 15,000 mg COD L−1, the methane yield was dropped dramatically. The methane production rates (Rmax) and yields exerted similar trend regarding the POME concentration. Accumulation of volatile fatty acids in the reactor posed the drop of methane production. Ozonation pretreatment process of POME can improve the biodegradability of the complex organic matter in POME and enhanced methane yield and rate at POME concentration range of 3,000–15,000 mg COD L−1. 相似文献
2.
Bidattul Syirat Zainal Ali Akhbar Zinatizadeh Ong Hwai Chyuan Nuruol Syuhadaa Mohd Shaliza Ibrahim 《International Journal of Hydrogen Energy》2018,43(23):10637-10644
A batch study for biohydrogen production was conducted using raw palm oil mill effluent (POME) and POME sludge as a feed and inoculum respectively. Response Surface Methodology (RSM) was used to design the experiments. Experiments were conducted at different reaction temperatures (30–50 °C), inoculum size to substrate ratios (I:S) and reaction times (8–24 h). An optimum condition of biohydrogen production was achieved with COD removal efficiency of 21.95% with hydrogen yield of 28.47 ml H2 g?1 COD removed. The I:S ratio was 40:60, with reaction temperature of 50 °C at 8 h of reaction time. The study showed that a lower substrate concentration (less than 20 g L?1) for biohydrogen production using pre-settled POME was achievable, with optimum HRT of 8 h under thermophilic condition (50 °C). This study also found that pre-settled POME is feasible to be used as a substrate for biohydrogen production under thermophilic condition. 相似文献
3.
Marzieh BadieiJamaliah Md Jahim Nurina AnuarSiti Rozaimah Sheikh Abdullah 《International Journal of Hydrogen Energy》2011,36(10):5912-5919
The feasibility of hydrogen generation from palm oil mill effluent (POME), a high strength wastewater with high solid content, was evaluated in an anaerobic sequencing batch reactor (ASBR) using enriched mixed microflora, under mesophilic digestion process at 37 °C. Four different hydraulic retention times (HRT), ranging from 96 h to 36 h at constant cycle length of 24 h and various organic loading rate (OLR) concentrations were tested to evaluate hydrogen productivity and operational stability of ASBR. The results showed higher system efficiency was achieved at HRT of 72 h with maximum hydrogen production rate of 6.7 LH2/L/d and hydrogen yield of 0.34 LH2/g CODfeeding, while in longer and shorter HRTs, hydrogen productivity decreased. Organic matter removal efficiency was affected by HRT; accordingly, total and soluble COD removal reached more than 37% and 50%, respectively. Solid retention time (SRT) of 4-19 days was achieved at these wide ranges of HRTs. Butyrate was found to be the dominant metabolite in all HRTs. Low concentration of volatile fatty acid (VFA) confirmed the state of stability and efficiency of sequential batch mode operation was achieved in ASBR. Results also suggest that ASBR has the potential to offer high digestion rate and good stability of operation for POME treatment. 相似文献
4.
Fermentative hydrogen production from indigenous mesophilic strain Bacillus anthracis PUNAJAN 1 newly isolated from palm oil mill effluent 总被引:1,自引:0,他引:1
Puranjan Mishra Sveta Thakur Lakhveer Singh Santhana Krishnan Mimi Sakinah Zularisam Ab Wahid 《International Journal of Hydrogen Energy》2017,42(25):16054-16063
In the present study, a new mesophilic bacterial strain, identified as Bacillus anthracis strain PUNAJAN 1 was isolated from palm oil mill effluent (POME) sludge, and tested for its hydrogen production ability. Effect of physico-chemical factors such as temperature, initial pH, nitrogen source and carbon sources were investigated in order to determine the optimal conditions for hydrogen production. The maximum hydrogen yield of 2.42 mol H2/mol mannose was obtained at 35 °C and initial pH of 6.5. Yeast and mannose were used as the main carbon and nitrogen sources respectively in the course of the hydrogen production. Apart from synthetic substrate, specific hydrogen production potentials of the strain using POME was calculated and found to be 236 ml H2/g chemical oxygen demand (COD). The findings of this study demonstrate that the indigenous strain PUNAJAN 1 could be a potential candidate for hydrogen using POME as substrate. 相似文献
5.
Mei-Ling Chong Raha Abdul Rahim Yoshihito Shirai Mohd Ali Hassan 《International Journal of Hydrogen Energy》2009
A hydrogen producer was successfully isolated from anaerobic digested palm oil mill effluent (POME) sludge. The strain, designated as Clostridium butyricum EB6, efficiently produced hydrogen concurrently with cell growth. A controlled study was done on a synthetic medium at an initial pH value of 6.0 with 10 g/L glucose with the maximum hydrogen production at 948 mL H2/L-medium and the volumetric hydrogen production rate at 172 mL H2/L-medium/h. The supplementation of yeast extract was shown to have a significant effect with a maximum hydrogen production of 992 mL H2/L-medium at 4 g/L of yeast extract added. The effect of pH on hydrogen production from POME was investigated. Experimental results showed that the optimum hydrogen production ability occurred at pH 5.5. The maximum hydrogen production and maximum volumetric hydrogen production rate were at 3195 mL H2/L-medium and 1034 mL H2/L-medium/h, respectively. The hydrogen content in the biogas produced was in the range of 60–70%. 相似文献
6.
Supachai Nitipan Chonticha Mamimin Nugul Intrasungkha Nils Kåre Birkeland Sompong O-Thong 《International Journal of Hydrogen Energy》2014
The microbial community structure of thermophilic mixed culture sludge used for biohydrogen production from palm oil mill effluent was analyzed by fluorescence in situ hybridization (FISH) and 16S rRNA gene clone library techniques. The hydrogen-producing bacteria were isolated and their ability to produce hydrogen was confirmed. The microbial community was dominated by Thermoanaerobacterium species (∼66%). The remaining microorganisms belonged to Clostridium and Desulfotomaculum spp. (∼28% and ∼6%, respectively). Three hydrogen-producing strains, namely HPB-1, HPB-2, and HPB-3, were isolated. 16S rRNA gene sequence analysis of HPB-1 and HPB-2 revealed a high similarity to Thermoanaerobacterium thermosaccharolyticum (98.6% and 99.0%, respectively). The Thermoanaerobacterium HPB-2 strain was a promising candidate for thermophilic fermentative hydrogen production with a hydrogen yield of 2.53 mol H2 mol−1hexose from organic waste and wastewater containing a mixture of hexose and pentose sugars. Thermoanaerobacterium species play a major role in thermophilic hydrogen production as confirmed both by molecular and cultivation-based analyses. 相似文献
7.
Marzieh Badiei Jamaliah Md Jahim Nurina Anuar Siti Rozaimah Sheikh Abdullah Lim Swee Su Mohd Aidil Kamaruzzaman 《International Journal of Hydrogen Energy》2012
This study investigated the microbial community of an anaerobic sequencing batch reactor (ASBR) operating at mesophilic temperature under varying hydraulic retention times (HRTs) for evaluating optimal hydrogen production conditions, using palm oil mill effluent (POME) as substrate. POME sludge enriched by heat treatment with hydrogen-producing bacteria was used as inoculum and acclimated with the POME. The microbial community was determined by first isolating cultivable bacteria at each operating HRT and then using polymerase chain reaction (PCR). The PCR products were sequenced and sequence identification was performed using the BLAST algorithm and Genbank database. The findings revealed that about 50% of the isolates present were members of the genus Streptococcus, about 30% were Lactobacillus species and around 20% were identified as species of genus Clostridium. Scanning electron microscopy (SEM) analysis also confirmed the presence of spherical and rod-shaped microbial morphologies in the sludge samples of bioreactor during prolonged cultivation. 相似文献
8.
Lakhveer Singh Zularisam A. Wahid Muhammad Faisal Siddiqui Anwar Ahmad Mohd Hasbi Ab. Rahim Mimi Sakinah 《International Journal of Hydrogen Energy》2013
Polyethylene glycol (PEG) gel was used to immobilize hydrogen producing Clostridium LS2 bacteria for hydrogen production in an upflow anaerobic sludge blanket (UASB) reactor. The UASB reactor with a PEG-immobilized cell packing ratio of 10% weight to volume ratio (w/v) was optimal for dark hydrogen production. The performance of the UASB reactor fed with palm oil mill effluent (POME) as a carbon source was examined under various hydraulic retention time (HRT) and POME concentration. The best volumetric hydrogen production rate of 365 mL H2/L/h (or 16.2 mmol/L/h) with a hydrogen yield of 0.38 L H2/g CODadded was obtained at POME concentration of 30 g COD/L and HRT of 16 h. The average hydrogen content of biogas and COD reduction were 68% and 65%, respectively. The primary soluble metabolites were butyric acid and acetic acid with smaller quantities of other volatile fatty acid and alcohols formed during hydrogen fermentation. More importantly, the feasibility of PEG-immobilized cell UASB reactor for the enhancement of the dark-hydrogen production and treatment of wastewater is demonstrated. 相似文献
9.
Azam Akhbari Onn Chiu Chuen Shaliza Ibrahim 《International Journal of Hydrogen Energy》2021,46(17):10191-10204
A start-up study of lab-scale up-flow anaerobic sludge blanket fixed-film reactor (UASFF) was conducted to produce biohydrogen from palm oil mill effluent (POME). The reactor was fed with POME at different hydraulic retention time (HRT) and organic loading rate (OLR) to obtain the optimum fermentation time for maximum hydrogen yield (HY). The results showed the HY, volumetric hydrogen production rate (VHPR), and COD removal of 0.5–1.1 L H2/g CODconsumed, 1.98–4.1 L H2 L?1 day?1, and 33.4–38.5%, respectively. The characteristic study on POME particles was analyzed by particle size distribution (PSD), Scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDX). The microbial Shannon and Simpson diversity indices and Principal Component Analysis assessed the alpha and beta diversity, respectively. The results indicated the change of bacterial community diversity over the operation, in which Clostridium sensu stricto 1 and Lactobacillus species were contributed to hydrogen fermentation. 相似文献
10.
《International Journal of Hydrogen Energy》2019,44(6):3347-3355
The pilot-scale of two-stage thermophilic (55 °C) for biohythane production from palm oil mill effluent (POME) was operated at hydraulic retention time (HRT) of 2 days and organic loading rate (OLR) of 27.5 gCOD/L⋅d) for first stage and HRT of 10 days and OLR of 5.5 gCOD/L⋅d for second stage. Biohythane production rate was 1.93 L-gas/L⋅d with biogas containing 11% H2, 37% CO2, and 52% CH4. Recirculation of methane effluent mixed with POME at a ratio of 1:1 can control pH in the first stage at an optimal range of 5.0–6.5. Microbial community in hydrogen stage dominated by Thermoanaerobacterium sp., while methane stage dominated by Methanosarcina sp. The H2/CH4 ratio of biohythane was 0.13–0.18 which suitable for vehicle fuel. Biohythane production from POME could be promising cleaner biofuel with flexible and controllable H2/CH4 ratio. 相似文献
11.
《International Journal of Hydrogen Energy》2019,44(60):31841-31852
Biohydrogen production from palm oil mill effluent by two-stage dark fermentation and microbial electrolysis was investigated under thermophilic condition. The optimum chemical oxygen demand (COD) concentration and pH for dark fermentation were 66 g·L−1 and 6.5 with a hydrogen yield of 73 mL-H2·gCOD−1. The dark fermentation effluent consisted of mainly acetate and butyrate. The optimum voltage for microbial electrolysis was 0.7 V with a hydrogen yield of 163 mL-H2·gCOD−1. The hydrogen yield of continuous two-stage dark fermentation and microbial electrolysis was 236 mL-H2·gCOD−1 with a hydrogen production rate of 7.81 L·L−1·d−1. The hydrogen yield was 3 times increased when compared with dark fermentation alone. Thermoanaerobacterium sp. was dominated in the dark fermentation stage while Geobacter sp. and Desulfovibrio sp. dominated in the microbial electrolysis cell stage. Two-stage dark fermentation and microbial electrolysis under thermophilic condition is a highly promising option to maximize the conversion of palm oil mill effluent into biohydrogen. 相似文献
12.
《International Journal of Hydrogen Energy》2021,46(68):34059-34072
This study aims to analyse the life-cycle assessment of biohydrogen production from palm oil mill effluent (POME) in a pilot-scale up-flow anaerobic sludge blanket fixed-film reactor. The SimaPro LCA software and ReCiPe 2016 impact assessment method were used. Electricity usage was found to be a significant source of environmental impacts, with 50–98% of the total impacts. Furthermore, an improvement analysis was conducted, resulted in a reduction in all impacts, especially global warming impact with 77% reduction from 818 to 189 kg CO2-eq per kg biohydrogen. While shifting the pilot reactor to Sarawak may further lessen the impact to 142 kg CO2-eq due to cleaner grid in that region. Besides, if the environmental burden avoided due to usage of POME is considered, the global warming impact can be further reduced to 54.9 kg CO2-eq. Thus, the pilot reactor has huge potential, especially in utilizing waste to produce bioenergy. 相似文献
13.
《International Journal of Hydrogen Energy》2019,44(11):5176-5181
Enhancement of biological H2 production efficiency with pre-ozonation process of palm oil mill effluent (POME) prior to thermophilic dark fermentation (55 °C) was investigated. H2 fermentation experiments were conducted using varying concentrations of raw and ozonated POME. Results revealed that H2 can be produced from both raw and ozonated POME under thermophilic fermentation. Maximum H2 production yield of 77 mL.g−1CODremoved was obtained from ozonated POME, which was higher than that of 51 mL·g−1 CODremoved obtained from raw POME at the highest concentration of 35,000 mg COD.L−1. Meanwhile, the specific H2 production rate (R'max) of 1.9 and 1.5 mL·h−1·g−1 TVS were observed in raw and ozonated POME at the concentration of 25,000 mg COD.L−1, respectively. The main metabolic products during POME fermentation were acetic and butyric acids and trace amount of valeric acid. Propionic acid and ethanol have contributed, which could be reduced H2 production in all batch experiments for both POME. The highest efficiency of total and soluble COD removal of 24 and 25% was obtained from the raw POME, and those of 19 and 25% was obtained from the ozonated POME. The present study demonstrates that the POME loading was greatly influenced on the H2 production yields and rates. The comparative results showed that the ozonated POME gave higher H2 yields than the raw POME. Thus, demonstrating that the ozonation process significantly improved the POME biodegradability, which is able to enhance H2 production yields. However, the ozone pre-treatment was not improved in the specific H2 production rates. 相似文献
14.
15.
《International Journal of Hydrogen Energy》2023,48(55):21066-21087
Due to accelerating global efforts toward decarbonization, a clean hydrogen (H2) producing technology, Microbial Electrolysis Cell (MEC), has garnered considerable attention. However, MEC's external energy requirement has raised concerns about its sustainability, scalability and application costs. The objective of this research was to build a renewable energy generating system for MECs' performance enhancement during the treatment of Palm oil mill effluent (POME). A novel integration of a pico-hydro-power generator (PHP) with single-chambered MECs exceptionally improved its performance. The performance boost was observed as 1.16 m3-H2/m3d H2 and 113 A/m3current production in concomitant with 73% organics removal from Palm Oil Mill Effluent (POME) wastewater, which is higher than the previous single-chambered MECs studies. 78% H2 recovery rcat (H2) along with 57% coulombic efficiency (CE) corroborated the removal of a high percentage of electrons from POME organic materials to generate >96% pure H2. The MEC nourished POME wastewater degrading communities while stimulating growth of electroactive Geobacter in the anodic biofilm which produced H2. The overall H2 recovery, COD removal rate and energy efficiency of PHP-MEC are superior than other MECs powered by other external renewable energy sources reported to date. The PHP-MEC prototype paves the path of scale up studies to build a renewable energy dependent future. 相似文献
16.
17.
Kim Hoong Ng Yoke Wang Cheng Zhan Sheng Lee Maksudur R. Khan Su Shiung Lam Chin Kui Cheng 《International Journal of Hydrogen Energy》2018,43(33):15784-15793
The current work describes a novel application of steam reforming process to treat palm oil mill effluent (POME), whilst co-generating H2-rich syngas from the treatment itself. The effects of reaction temperature, partial pressure of POME and gas-hourly-space-velocity (GHSV) were determined. High crystallinity 20 wt%Ni/80 wt%Al2O3 catalyst with smooth surface was prepared via impregnation method. Baseline runs revealed that the prepared catalyst was highly effective in destructing organic compounds, with a two-fold enhancement observed in the presence of 20 wt% Ni/80 wt%Al2O3 catalyst, despite its low specific surface area (2.09 m2 g?1). In addition, both the temperature and partial pressure of POME abet the COD reduction. Consequently, the highest COD reduction of 99.7% was achieved, with a final COD level of 73 ± 5 ppm from 27,500 ppm, at GHSV of 40,000 mL/h.gcat and partial pressure of POME equivalent to 95 kPa at 1173 K. In terms of gaseous products, H2 was found to be the major component, with selectivity ranged 51.0%–70.9%, followed by CO2 (17.7%–34.1%), CO (7.7%–18.4%) and some CH4 (0.6%–3.3%). Furthermore, quadratic models with high R2-values were developed. 相似文献
18.
19.
《International Journal of Hydrogen Energy》2022,47(34):15464-15479
Microbial electrolysis cells (MECs) are a new bio-electrochemical method for converting organic matter to hydrogen gas (H2). Palm oil mill effluent (POME) is hazardous wastewater that is mostly formed during the crude oil extraction process in the palm oil industry. In the present study, POME was used in the MEC system for hydrogen generation as a feasible treatment technology. To enhance biohydrogen generation from POME in the MEC, an empirical model was generated using response surface methodology (RSM). A central composite design (CCD) was utilized to perform twenty experimental runs of MEC given three important variables, namely incubation temperature, initial pH, and influent dilution rate. Experimental results from CCD showed that an average value of 1.16 m3 H2/m3 d for maximum hydrogen production rate (HPR) was produced. A second-order polynomial model was adjusted to the experimental results from CCD. The regression model showed that the quadratic term of all variables tested had a highly significant effect (P < 0.01) on maximum HPR as a defined response. The analysis of the empirical model revealed that the optimal conditions for maximum HPR were incubation temperature, initial pH, and influent dilution rate of 30.23 °C, 6.63, and 50.71%, respectively. Generated regression model predicted a maximum HPR of 1.1659 m3 H2/m3 d could be generated under optimum conditions. Confirmation experimentation was conducted in the optimal conditions determined. Experimental results of the validation test showed that a maximum HPR of 1.1747 m3 H2/m3 d was produced. 相似文献
20.
《International Journal of Hydrogen Energy》2019,44(37):20900-20913
This paper reports on the novel application of catalytic steam reforming process to convert palm oil mill effluent (POME) into syngas over a 20wt%Ni/80wt%Al2O3 catalyst. The catalyst possessed high degree of crystallinity and was impurity-free, judging from the obtained XRD pattern. Furthermore, the BET specific surface area of catalyst was low (2.09 m2 g−1), consistent with smooth surface captured by the FESEM images. CO2-desorption and NH3-desorption profiles showed a presence of both acid and basic sites on the surface of catalyst. In the absence of catalyst, about 7.0% reduction of chemical oxygen demand (COD) was achieved at 6.0 mL h−1 flow rate of POME, reforming temperature of 873 K and 20 mL min−1 of N2-flow. Significantly, the COD reduction shot up to 93.7% in the presence of catalyst and liquid-hourly-space-velocity (LHSV) of POME of 90 mL h−1 gcat−1 at 873 K. The corresponding biochemical oxygen demand (BOD) reduction recorded was 93.8%. However, normalized carbon loss indicates that a high LHSV would favour carbon deposition. In addition to high LHSV, the carbon deposition was also influenced by reaction temperature. High reaction temperature has reduced carbon deposition, as well as organics removal. COD reduction was 99.41% and BOD reduction was 99.52% at 1173 K when LHSV was 60 mL h−1 gcat−1. In the gas phase, four species were consistently detected, viz. H2, CO2, CO and CH4, with H2 as the major component. The H2 selectivity increased with both LHSV and reaction temperature. 相似文献