首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The catalytic performance of 5 wt% Ni/TiO2 catalysts with different physicochemical properties was studied for the CO2 reforming of methane reaction. The TiO2 supports were prepared by the evaporation-induced self-assembly method using three different titania metal precursors. The catalysts were characterized by XRD, BET, TGA, and TEM techniques. The results showed that the phase composition of TiO2 support plays a crucial role in catalyst performance. Furthermore, the variation of synthesis conditions significantly affects the physicochemical properties of TiO2 support. NH3-treatment helped maintain the higher surface area by retaining a significant fraction of the amorphous content of titania support. Catalysts deactivation was caused by the phase transformation of TiO2 from anatase to rutile and the sintering of Ni metal. Phase transformation into rutile was more significant, with the catalysts possessing a higher content of amorphous TiO2. Ni/TiO2 catalyst prepared using the titanium ethoxide precursor performed better in the dry reforming reaction. Anatase titania offers strong metal-support interaction, whereas weak metal-support interaction was observed in the amorphous and rutile phase.  相似文献   

2.
In this study, hierarchical composites of Titania-graphene nanograss arrays (TiO2@Gr) on shape memory alloy were prepared via chemical vapor deposition-controlled growth process (camphor as source) and subsequent hydrothermal method. The TiO2@Gr composite composition was optimized by varying the concentrations of graphene on TiO2 nanograss grown over shape memory alloy. The optical, surface, and structural studies of as-prepared TiO2@Gr composite were performed under UV–vis spectroscopy, Field Emission Scanning Electron Microscope, Transmission Electron Microscope, Raman, X-ray diffraction and X-ray photoelectron spectroscopy. The result revealed the formation of pure rutile phase Titania nanograss with the impregnation of graphene sheets. Further, the impregnated graphene-Titania composite samples were used as photoanodes (photoelectrode) in 1 M potassium hydroxide solution for photoelectrochemical application. The results revealed an enhancement in photocurrent density of 1.82 mA/cm2 at 1.23 V vs. reversible hydrogen electrode, signifying excellent photoelectrochemical performance superior to that of pure rutile titania (nearly 3.5 times), which is attributed to a synergetic effect of the improved electron-hole pair separation rate leading to superior charge transfer due to the presence of graphene nanosheets. Transient photo-response studies (TPS) and Electrochemical impedance spectroscopy (EIS) were used to study the effective charge transfer response and interfacial charge transfer process respectively. The approach for the fabrication of the hierarchical nanocomposite in this study may drive the way for designing innovative composite materials for enhanced photoelectrochemical performance.  相似文献   

3.
The study reported in this paper combines the electrocoagulation and photocatalysis for the simultaneous degradation of methylene blue dyes (MB)-antibiotic ciprofloxacin (CP) and production of hydrogen. The pollutant removal process was conducted by combining adsorption by electrocoagulation and degradation by photocatalysis. Meanwhile, H2 was produced by reducing the H+ on the cathode and the photocatalyst surface in a reactor made of acrylic equipped with aluminum as the anode, stainless steel 316 plates as a cathode, Fe-doped titania nanotube arrays (TiNTAs) as a photocatalyst, and a 250-W mercury lamp as the light source. TiNTAs were synthesized via anodization and followed by the successive ionic layer adsorption and reaction (SILAR) method to incorporate Fe as the dopant. In particular, the effects of Fe loading in the composite photocatalyst are investigated. XRD results showed that TiO2 nanotubes arrays comprise a 100% anatase phase. FESEM, EDX, TEM, and HRTEM analysis confirmed the formation of the nanotubular structure of TiO2 and the presence of Fe deposited on the surface. The UV–Vis DRS indicated that the bandgap of Fe-TiNTAs reduced with Fe introduction, as compared to that of the undoped TiNTAs. The results showed that accumulation of the produced hydrogen from the combination of electrocoagulation-photocatalytic system is greater than that which is obtained using individual electrocoagulation or photocatalytic system. The combined process exhibited an enhanced degradation ability of methylene blue and ciprofloxacin, as well as in the H2 production.  相似文献   

4.
Ag2O/TiO2 catalysts with varying amounts of Ag2O 0.5, 1, 2, and 5 wt% loadings are prepared by impregnation method and Ag/TiO2 catalyst is prepared by photo deposition method. These catalysts are characterized by XRD, SEM-EDAX, DRS, XPS and TEM techniques. DRS studies clearly showing the expanded photo response of TiO2 into visible region on impregnation of Ag+ ions on surface layers of TiO2 due to the increased number of energy states created by the silver ions in TiO2 surface lattice. TEM images are showing the fine dispersion of silver particles on TiO2 surface. XPS of Ag2O/TiO2 calcined and used catalysts along with Ag2O/TiO2 reduced and Ag/TiO2 photo deposited catalysts are compared and the binding energy values of Ti 2p, O1s and Ag 3d are confirming that silver ions are in interaction with TiO2 in Ag2O/TiO2 calcined catalysts. EDAX analysis supports the presence of silver species on the surface layers of TiO2. Photocatalytic hydrogen production activity studies are conducted over Ag2O/TiO2, Ag2O/TiO2 reduced and Ag/TiO2 photo deposited catalysts in pure water and methanol:water mixtures under solar irradiation. Maximum hydrogen production of 145 μmoles/h is observed on 0.5wt% Ag2O/TiO2 catalyst in pure water and the maximum hydrogen production of 3350 μmoles/h is observed on 1wt% Ag2O/TiO2 catalyst in methanol:water mixtures. Whereas Ag2O/TiO2 reduced and Ag/TiO2 photo deposited catalysts are not showing any hydrogen production activity either in water or in methanol:water mixtures under solar irradiation. Based on the XPS, DRS, TEM, SEM-EDAX studies and the hydrogen production activity on these catalysts, a structure–activity correlation has been proposed wherein the interacted Ag+ ions on the surface layers of TiO2 are playing an important role in maintaining the hydrogen production activity under solar irradiation.  相似文献   

5.
The effects of several modifications on TiO2 P25 in producing hydrogen from glycerol–water mixture have been investigated. Prior to further modification, TiO2 underwent hydrothermal treatment at 130°C for several hours to obtain nanotube shape. TiO2 nanotubes (TiNT) was then doped with platinum (Pt) and nitrogen (N) by employing photo‐deposition and impregnation method, respectively. SEM and XRD results showed that Pt‐N‐TiNT was successfully obtained as pure anatase crystal structure. The effects of glycerol content to photocatalytic activity of hydrogen production have also been studied, result in 50%v of glycerol as the optimum concentration correspond to the stoichiometric volume ratio of glycerol reforming. The results of photo‐production test showed that TiNT (nanotube) could enhance hydrogen generation by two times compared with unmodified P25 (nanoparticle). Meanwhile, simultaneous modification of TiNT by Pt and N dopants (Pt‐N‐TiNT) lead to activity improvement up to 13 times compared with P25. The output of this study may contribute toward finding an alternative pathway to produce H2 from renewable resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Photo-induced reforming of methanol, ethanol, glycerol and phenol at room temperature for hydrogen production was investigated with the use of ultra-small Pt nanoparticles (NPs) loaded on TiO2 nanotubes (NTs). The Pt NPs with diameters between 1.1 and 1.3 nm were deposited on TiO2 NTs by DC-magnetron sputtering (DC-MS) technique. The photocatalytic hydrogen rate achieved an optimum value for a loading of about 1 wt% of Pt. Apparent quantum yield for hydrogen generation was measured for methanol and ethanol water solutions reaching a maximum of 16% under irradiation with a wavelength of 313 nm in methanol/water solution (1/8 v/v). Pt NPs loaded on TiO2 NTs represented also a true water splitting catalyst under UV irradiation and pure distilled water. DC-MS method appears to be a technologically simple, ecologically benign and potentially low-cost process for production of an efficient photocatalyst loaded with ultra-small NPs with precise size control.  相似文献   

7.
A series of transition metals sulfides deposited on anatase titania (MSx/TiO2) were prepared by precipitation of transition metals salts with thioacetamide in aqueous medium under reflux. The solids were characterized by XRD, XPS, temperature programmed reduction and transmission electron microscopy. The properties of as obtained catalysts were compared for the photocatalytic hydrogen evolution reaction (PHER) in pure methanol and water-isopropanol mixture. The sequences of PHER activity were compared with electrochemical HER and thiophene hydrodesulfurization (HDS) activity of the corresponding sulfides prepared by the same technique. For PHER, in both alcohols the most active photocatalysts contain hydrogenating sulfides of Co and Ru. However the PHER activity does not follow the same trend as electrocatalytic HER and thiophene HDS. Some sulfides, such as HgS or CuS, show poor activity in HDS and electrocatalytic HER, but have the PHER activity comparable with that of the best samples. This difference suggests that the PHER rate is not merely related to the hydrogen activating properties of the co-catalyst, but is enhanced by the transfer of photogenerated electrons from TiO2 towards the sulfide. The ranking of the co-catalysts and the PHER activity depend also on the nature of the alcohol molecule, the overall PHER rates in water-isopropanol mixture being lower than in methanol.  相似文献   

8.
Abstract

Abstract

Tm doped TiO2 nanoparticles have been synthesised by hydrolysis-precipitation method. The effect of heat treatment on the crystal phase and photocatalytic activity of Tm doped TiO2 nanoparticles has been studied. The prepared samples were characterised by transmission electron microscopy, X-ray diffraction, Fourier transformed infrared and diffuse reflection spectrum analysis. The results show that Tm3+ doping can effectively inhibit the phase transformation from antase to rutile and decrease the crystallite size of nano-TiO2 particles. There is an optimal Tm doping (1·4?mol.-%) after calcination at 550°C for the photocatalytic activity of methylene blue degradation.  相似文献   

9.
In this study, platinum (Pt) supported on titanium (Ti) mesh catalysts for catalytic hydrogen combustion were prepared by depositing Pt as a thin-layer on metallic or calcined Ti mesh. The Pt thin-layer could be stabilized as uniformly distributed, near nano-sized particles on the surface of calcined Ti mesh by exposing the freshly sputtered Pt to hydrogen. Temperatures between 478 and 525 °C were reached during hydrogen combustion and could be maintained at a hydrogen flow rate of 0.4 normal liter (Nl)/min for several hrs. It was determined that Ti mesh calcination at ≥900 °C formed an oxide layer on the surface of Ti wires, which prevented significant Pt aggregation. X-ray photoelectron spectroscopy revealed that the surface of Ti mesh was fully converted to TiO2 at ≥900 °C. Raman spectroscopy showed that the majority of TiO2 was present in the rutile phase, with some minor contribution from anatase-TiO2. The calcined Ti support was stable through all investigations and did not indicate any signs of degradation.  相似文献   

10.
Nanocrystalline titanium oxide powder has been synthesized by reactive plasma processing. The precursor powder of TiH2 is oxidized ‘in-flight’ in a thermal plasma reactor to generate nanocrystalline titania powder. The synthesized powder consists of nano-sized particles of anatase and rutile phases of titanium dioxide. Photocatalytic activity of the plasma-synthesized powder was evaluated by studying the degradation of methylene blue dye solution under direct sunlight as well as UV irradiation. FTIR spectroscopy and X-ray photoelectron spectroscopy have been used to analyze the catalytic activity of the plasma-synthesized powder. UV-visible diffused reflectance spectra of the plasma-synthesized TiO2 samples showed that they absorb in the visible region leading to effective photocatalytic activity in sunlight. The results corroborated that the plasma-synthesized powder can be effectively used for outdoor applications.  相似文献   

11.
Increasing the activity of a photocatalyst goes through the improvement of both its absorption (light) and adsorption (reactant) properties. For a given semiconducting material, the charge carrier separation is also a very important step. Properly combining chosen phases is one option to improve this separation (example of the commercial P25) and depositing platinum on the surface of the catalyst, another one. In some cases, coupling both may nevertheless lead to a decrease of photoactivity or at least limit the potentiality of the catalyst. A third option, consisting in modifying the morphology of the photoactive phase, has shown very promising results.In this study, we have elaborated, characterized and evaluated the hydrogen evolution potentiality (through methanol assisted water splitting) of different TiO2 morphologies: nanoparticles, nanotubes and aerogels. These materials have shown different behaviours depending on both their composition and morphology. Different types of separation processes have been claimed to account for the observed different photoactivities, with more or less pronounced synergetic effects, due to: the use of Pt as a co-catalyst, the mixture of different TiO2 phases (anatase and TiO2(B) or rutile) and the specific morphology of the samples (nanotubes or aerogels). Among all the tested samples, the TiO2 aerogel supported Pt one exhibited very promising performances, three times as active as P25 supported Pt, which is already much more active than pure P25 in our testing conditions.  相似文献   

12.
The photocatalytic hydrogen generation is a novel, eco-friendly and favourable method for production of green and clean energy using light energy. In this direction, we report low-temperature ionothermal method for the preparation of TiO2 nanoparticles (NPs) using methoxy ethyl methyl imidazolium tris (pentafluoroethyl) trifluoro phosphate (MOEMINtf2) as an ionic liquid (IL) at 120°C for 1 day. The synthesized nanomaterials were examined using different spectrochemical methods like UV-DRS, XRD, FT-IR, TEM, BET and TGA-DTA techniques. The mixed phase TiO2 is obtained with 81.7% of anatase and 18.3% of rutile phase by the XRD studies, and average crystallite size is found to be ∼7 nm. The stretching of Ti-O bond (∼555 cm−1) and few other bands related to ionic liquid were confirmed by FTIR spectrum. The band gap energy was observed to be ∼3.38 eV by UV-DRS analysis. TEM images reveal spherical shape with an average particles size of about 10 nm. Photocatalytic H2 generation was carried out using TiO2 NPs and observed the generation of 553 μmol h−1 g−1 via water splitting reaction. Furthermore, the prepared TiO2 NPs employed for the photocatalytic degradation of methylene blue dye (84.54%), and photoluminescence studies confirms the obtained material can be used in optoelectronic applications with green emission.  相似文献   

13.
Carbon nanotubes used as supports for platinum catalysts deposited with metal oxides (CeO2, TiO2, and SnO2) were prepared for their application as anode catalysts in a direct methanol fuel cell. Cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy measurements were carried out in a solution of 0.5 M CH3OH and 0.5 M H2SO4. Catalysts with the addition of CeO2, TiO2, and SnO2 presented higher catalytic activity than pure platinum catalysts, and the catalysts with CeO2 were the best among them. Electrochemical impedance spectra indicated that methanol electrooxidation on these catalysts had different impedance behaviors at different potential regions. The mechanism of methanol electrooxidation changed with increases of the potential. The promotion effect of the metal oxides lies in the oxidation of intermediate COads on Pt at low potential regions.  相似文献   

14.
The extension of the absorption band of solar energy is an efficient strategy to dramatically enhance the application value of TiO2. Based on this, we have prepared carbon nitride quantum dots (CNQDs)/TiO2 nanoparticle heterojunctions by mixing TiO2 and the as-prepared CNQDs by the simple mechanical stirring method. The synthesized CNQDs-x/TiO2 composites were systematically characterized in term of their physicochemical properties, the performance of photocatalytic degradation of Bisphenol A, and their photocatalytic hydrogen evolution performance under stimulated sunlight. The CNQDs/TiO2 nanoparticle exhibited a lattice spacing of 0.352 nm, assigning to the (101) crystal plane of anatase phase TiO2. Intriguingly, the modification of TiO2 nanoparticle with CNQDs can indeed get a narrower optical band gap of 3.02 eV, with a wider absorption range extending to visible light region and could enhance their overall photocatalytic performance over the commercially TiO2 nanoparticles. In Addition, it was demonstrated that the ratios of CNQDs to TiO2 exhibited obvious influence on the photocatalytic performance of the obtained composite catalysts.By contrast to the pure TiO2, all the CNQDs-x/TiO2 composites displayed higher photocatalytic activities, and the CNQDs-2/TiO2 possessed the highest photocatalytic degradation capacity towards bisphenol A with a reaction rate constant 0.30 (0.17 for pure TiO2). Meanwhile, the H2 production rate of CNQDs-2/TiO2 sample is about 30 μmol g−1 h−1 higher than that of the pure TiO2 nanoparticles. Moreover, the photocurrent intensity of CNQDs-2/TiO2 was about 25 times higher compared to that of pure TiO2 nanoparticles. Therefore, our research results can provide valuable guidance for exploring high-performance photocatalytic materials.  相似文献   

15.
Barium doped titania hollow sphere catalysts of various compositions were prepared and their electrocatalytic performance was evaluated in acidic media. Titania hollow sphere particles were prepared using poly (styrene–methacrylic acid) latex as template material, and BaCl2 was used precursor material during barium doping over spheres. The morphology and structure of Ba/TiO2 hollow spheres were characterized by BET, XRD, TGA and TEM analysis. XRD results had confirmed the presence of rutile TiO2 and BaTiO3 phases in the catalysts. The catalysts have shown almost similar surface area values (around 97 m2/g) irrespective of their compositions. On the other hand, surface area values were diminished remarkably with rise in the calcination temperatures. In TEM images, hollow sphere formation with uniform layer of barium over the spheres could clearly be observed. Diameter of Ba-doped TiO2 hollow sphere was found 0.4–0.5 μm irrespective of the variation in calcination temperatures. In cyclic voltammograms, both the hydrogen and oxygen evolution peaks were present for all the hollow sphere samples; although the peak positions had changed to some extent for few samples. Anodic polarization curves have shown 60 mA cm−2 current density for 20 wt% Ba/TiO2 hollow sphere sample. Tafel slope is revealed as 122 mV for the same electrocatalyst. Barium doped titania hollow spheres have also shown long time electrocatalytic stability in acid solution.  相似文献   

16.
Photocatalysts can be used both for air cleaning and solar energy harvesting through water splitting. However, pure TiO2 photocatalysts are often inefficient and therefore co-catalysts are needed to improve the yield. To achieve this goal, we prepared TiO2 and deposited Pt, Ir and Ru co-catalysts on its surface. Two base TiO2 nanoparticles were used: P25 and rutile TiO2 synthesized via hydrothermal method. Co-catalysts were deposited by wet impregnation technique using single element and a combination of two elements (Pt and Ir or Pt and Ru), followed by annealing in either air or H2/Ar. Annealing in reducing atmosphere increased the photocatalytic activity of oxidation of isopropanol compared to annealing in air. We demonstrated a clear influence of the co-catalysts on the photocatalytic degradation of isopropanol and on electrochemical water-splitting reaction. The platinum-containing samples showed the best HER activity.  相似文献   

17.
The photocatalytic oxidation of solutions of formic acid over supported semiconducting ceramic membranes has been investigated. Sol-gel techniques were employed to coat pyrex glass supports with colloidal solutions. Subsequent firing leads to supported ceramic membranes suitable for use as photocatalysts. The structure of these membranes affects the rate of photocatalytic oxidation of formic acid. The most active titania photocatalysts are those membranes characterized by the least number of boundaries between particles. Titania membranes doped with vanadium, molybdenum, yttrium, magnesium, lithium and rutherium oxides and platinum metal have been prepared. Only those titania membranes doped with magnesium oxide, lithium oxide or platinum metal were characterized by higher activities for the degradation of formic acid than the original titania membranes. The rate of this degradation reaction can be characterized by an expression of the Langmuir-Hinshelwood-Hougen-Watson form.  相似文献   

18.
Fe3+ doped TiO2 photocatalysts were prepared by hydrothermal treatment for the photocatalytic water splitting to produce stoichiometric hydrogen and oxygen under visible light irradiation. It was found that hydrothermal treatment at 110 °C for 10 h was essential for the synthesis of highly stabilized Fe3+ doped TiO2 photocatalysts. The synthesized photocatalysts were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS) and BET surface area techniques. The doping of highly stabilized Fe3+ in the titania matrix leads to significant red shift of optical response towards visible light owing to the reduced band gap energy. Optimum amount of Fe3+ doped TiO2, 1.0 wt% Fe/TiO2, showed drastically improved hydrogen production performance of 12.5 μmol-H2/h in aqueous methanol and 1.8 μmol-H2/h in pure water, respectively. This Fe/TiO2 photocatalyst was stable for 36 h without significant deactivation in the water splitting reaction.  相似文献   

19.
This work is concerned with preparation and characterization of nano-structured composite electrocatalytic material for hydrogen evolution based on CoPt hyper d-metallic phase and anatase (TiO2) hypo d-phase, both deposited on multiwalled carbon nanotubes (MWCNTs) as a carbon substrate. The main goal is partially or completely to replace Pt as the electrocatalytic material. Four electrocatalytic systems were prepared with common composition 10% Me + 18% TiO2 + MWCNTs, where Me = Co, CoPt (4:1, wt. ratio), CoPt (1:1, wt. ratio) and Pt. The structural changes and their influence on electrocatalytic activity were studied by means of XRD, TEM, SEM and FTIR. The electrocatalytic activity was assessed in aqueous alkaline and polymer acidic electrolytes by means of steady-state galvanostatic method. It was found that Co strongly affects the platinum particle size. The addition of Co reduces platinum particle's size from 11 nm (in pure Pt metallic system) to 4 nm (in both systems 4:1 and 1:1), i.e. almost by 3 times. The corresponding increase of the surface area and the number of the active catalytic centres improves the efficiency, despite the fact that the amount of used platinum was decreased up to 5 times. The catalyst based on CoPt (1:1) performed the best, while the activity of the pure platinum and CoPt (4:1) systems were very close. Generally, the studied electrocatalysts have shown good and stable performances for hydrogen evolution in PEM electrochemical cell. The influence of the hydrogen electrodes under investigation on the water electrolysis efficiency at current density of 0.3 A cm−2 was assessed, using previous data oxygen evolution on IrOx electrode. Related to the performances of commercial Pt (ELAT) electrode, when hydrogen electrodes with the prepared mixed electrocatalysts were used, the water electrolysis efficiency was only 5% lower for CoPt (1:1), nearly 10% lower for CoPt (4:1) and 13% lower in the case of pure Co-based electrocatalyst.  相似文献   

20.
Abstract

We have investigated polyvinylalcohol stabilized Au and Ag based nanoparticles supported on titania prepared via sol immobilisation for the anaerobic, ambient temperature reforming of methanol with water for the photocatalytic production of hydrogen. The catalytic activity of the Au/TiO2 catalysts was strongly affected by the metal loading and calcination temperature. Here, we report the preparation and use of supported Au–Ag nanoparticles, based on either the co-reduction or the consecutive reduction of the two metals. Au–Ag supported catalysts were more active than monometallic Au and Ag catalysts and the preparation methodology had a pronounced effect in terms of catalytic activity of the Au–Ag catalysts. In fact, using a consecutive reduction where Au was firstly reduced followed by reduction of Ag gave materials which exhibited the highest catalytic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号