首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because of the requirement of the utilization of energy resources in a way that is both effective and efficient, solid oxide fuel cells have become a notable preference due to their advantages such as high efficiency and use with different fuels. In addition, the integration of these systems in the production of alternative fuels such as hydrogen and ammonia are important for a sustainable future to combat environmental problems. For this reason, the main intention of this paper is to introduce a new plant combining the different systems that use the solid oxide fuel cell for a cleaner and sustainable future. In the modeled work, a solid oxide fuel cell, a gas turbine, an organic Rankine cycle, a Kalina cycle with ejector, a hydrogen generation and storage process, a wood steaming plant, and an ammonia production system is integrated, to generate useful products. Detailed thermodynamic modeling is performed through energy and exergy methods, to determine the performance of the advised system and subsystem. Moreover, energy efficiency, exergy efficiency, and exergy destruction analyses methods are applied to each sub-plant and the whole system separately. In addition, parametric research is carried out to examine the effects of modifying key parameters on the plant's and subsystems' performance. Looking at the analysis results, the amount of the hydrogen and ammonia generation capacities of this work are 0.0085 kgs?1and 0.2023 kgs?1, respectively. In addition, the modeled power plant produces a power rate of about 20,180 kW. As a result, this proposed study is calculated to have 61.04% energy efficiency, and 57.13% exergy efficiency.  相似文献   

2.
This study represents the results of the analysis and optimization of an integrated system for cogenerating electricity and freshwater. This setup consists of a Solid Oxide Fuel cell (SOFC) for producing electricity. Unburned fuel of the SOFC is burned in the afterburner to increase the temperature of the SOFC's outlet gasses and operate a Gas turbine (GT) to produce additional power and operate the air compressor. At the bottom of this cycle, a combined setup of a Multi-Effect Desalination (MED) and Reverse Osmosis (RO) is considered to produce freshwater from the unused heat capacity of the GT's exhaust gasses. Also, a Stirling engine is used in the fuel supply line to increase the fuel's temperature. Using LNG and the Stirling engine will replace the fuel compressor with a pump which increases the system performance and eliminates the need for the expansion valve. To study the system performance a mathematical model is developed in Engineering Equation Solver (EES) program. Then, the system's simulated data from the EES has been sent to MATLAB to promote the best operating condition based on the optimization criteria. An energetic, exergetic, economic, and environmental analysis has been performed and a Non-dominated Sorting Genetic Algorithm (NSGA-II) is used to achieve the goal. The two-objective optimization is performed to maximize the exergetic efficiency of the proposed system while minimizing the system's total cost of production. This cost is a weighted distribution of the Levelized Cost of Electricity (LCOE) and Levelized Cost of freshwater (LCOW). The results showed that the exergetic and energetic efficiencies of the system can reach 73.5% and 69.06% at the optimum point. The total electricity production of the system is 99 MW. The production cost is 11.71 Cents/kWh, of which 1.04 Cents/kWh is emission-related and environmental taxes. The freshwater production rate is 42.44 kg/s which costs 4.38 USD/m3.  相似文献   

3.
Although a solid oxide fuel cell combined with a gas turbine (SOFC-GT) has good performance, the temperature of exhaust from gas turbine is still relatively high. In order to recover the waste heat of exhaust from the SOFC-GT to enhance energy conversion efficiency as well as to reduce the emissions of greenhouse gases and pollutants, in this study a new combined cooling, heat and power (CCHP) system driven by the SOFC is proposed to perform the trigeneration by using ammonia-water mixture to recover the waste heat of exhaust from the SOFC-GT. The CCHP system, whose main fuel is methane, can generate electricity, cooling effect and heat effect simultaneously. The overall system performance has been evaluated by mathematical models and thermodynamic laws. A parametric analysis is also conducted to examine the effects of some key thermodynamic parameters on the system performance. Results indicate that the overall energy conversion efficiency exceeds 80% under the given conditions, and it is also found that the increasing the fuel flow rate can improve overall energy conversion efficiency, even though both the SOFC efficiency and electricity efficiency decrease. Moreover, with an increased compressor pressure ratio, the SOFC efficiency, electricity efficiency and overall energy conversion efficiency all increase. Ammonia concentration and pressure entering ammonia-water turbine can also affect the CCHP system performance.  相似文献   

4.
Combined cooling, heating and power: A review   总被引:16,自引:0,他引:16  
Combined cooling, heating and power (CCHP) systems, including various technologies, provide an alternative for the world to meet and solve energy-related problems, such as energy shortages, energy supply security, emission control, the economy and conservation of energy, etc. In the first part of this paper, the definition and benefits of CCHP systems are clarified; then the characteristics of CCHP technologies—especially technical performances—are presented, as well as the status of utilization and developments. In the third part, diverse CCHP configurations of existing technologies are presented, particularly four typical systems of various size ranges. The worldwide status quo of CCHP development is briefly introduced by dividing the world into four main sections: the US, Europe, Asia and the Pacific and rest of the world. It is concluded that, within decades, promising CCHP technologies can flourish with the cooperative efforts of governments, energy-related enterprises and professional associations.  相似文献   

5.
Solid oxide fuel cells (SOFCs) could generate power cleanly and efficiently by using a wide range of fuels. Through the recovery and utilization of the energy in the SOFC tail gas, SOFC combined heat and power (CHP) systems achieve efficient cascade utilization of fuels. In this article, an efficient 30 kW SOFC CHP system with multiple cycles is designed based on a commercial kw-level SOFC device. The energy and substances could be recycled at multiple levels in this system, which makes the system do not need external water supply anymore during working. Meanwhile, the performance, fuel applicability, flexibility and reliability of the system are investigated. Finally, an optimized operating condition is confirmed, in which the electrical efficiency is 54.0%, and the thermoelectric efficiency could reach 88.8% by using methanol as fuel.  相似文献   

6.
An integrated power system of biomass gasification with solid oxide fuel cells (SOFC) and micro gas turbine has been investigated by thermodynamic model. A zero-dimensional electrochemical model of SOFC and one-dimensional chemical kinetics model of downdraft biomass gasifier have been developed to analyze overall performance of the power system. Effects of various parameters such as moisture content in biomass, equivalence ratio and mass flow rate of dry biomass on the overall performance of system have been studied by energy analysis.It is found that char in the biomass tends to be converted with decreasing of moisture content and increasing of equivalence ratio due to higher temperature in reduction zone of gasifier. Electric and combined heat and power efficiencies of the power system increase with decreasing of moisture content and increasing of equivalence ratio, the electrical efficiency of this system could reach a level of approximately 56%.Regarding entire conversion of char in gasifier and acceptable electrical efficiency above 45%, operating condition in this study is suggested to be in the range of moisture content less than 0.2, equivalence ratio more than 0.46 and mass flow rate of biomass less than 20  kg h−1.  相似文献   

7.
Combined cooling, heating, and power (CCHP) is a cogeneration technology that integrates an absorption chiller to produce cooling, which is sometimes referred to as trigeneration. For building applications, CCHP systems have the advantage to maintain high overall energy efficiency throughout the year. Design and operation of CCHP systems must consider the type and quality of the energy being consumed. Type and magnitude of the on-site energy consumed by a building having separated heating and cooling systems is different than a building having CCHP. Therefore, building energy consumption must be compared using the same reference which is usually the primary energy measured at the source. Site-to-source energy conversion factors can be used to estimate the equivalent source energy from site energy consumption. However, building energy consumption depends on multiple parameters. In this study, mathematical relations are derived to define conditions a CCHP system should operate in order to guarantee primary energy savings.  相似文献   

8.
The aim of this study is to exploit the waste heat of a biomass-based solid oxide fuel cell (SOFC)–model (a)–in a gas turbine (GT) to enhance the power generation/exergy efficiency (model (b)). Moreover, surplus power which is generated by the GT is transferred to a proton exchange membrane electrolyzer (PEME) for hydrogen production (model (c)). Parametric study is performed to investigate the influence of the effective parameters on performance and economic indicators. Eventually, considering exergy efficiency and total product cost as the objective functions, the proposed models are optimized by multi-objective optimization method based on genetic algorithm. Accordingly, the optimum solution points are gathered as Pareto frontiers and subsequently favorable solution points are ascertained from exergy/economic standpoints. Results of parametric study indicate that model (b) is the best model as it has higher exergy efficiency and lower total product cost. Moreover, model (c) may be a more suitable model compared to the model (a) because of higher exergy efficiency and capability of hydrogen production. The results further show that, at the best final solution point, the exergy efficiency and total product cost of the model (b) would be 33.22% and 19.01 $/GJ, respectively. Corresponding values of exergy efficiency and total product cost of the model (c) are 32.3% and 20.1 $/GJ. Moreover, the rate of hydrogen production of the model (c) is 8.393 kg/day, at the best solution point. Overall, the integration methods are promising techniques for increasing exergy efficiency, reducing total product cost and also for hydrogen production.  相似文献   

9.
The study examines a novel system that combined a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC) for cooling, heating and power production (trigeneration) through exergy analysis. The system consists of an SOFC, an ORC, a heat exchanger and a single-effect absorption chiller. The system is modeled to produce a net electricity of around 500 kW. The study reveals that there is 3-25% gain on exergy efficiency when trigeneration is used compared with the power cycle only. Also, the study shows that as the current density of the SOFC increases, the exergy efficiencies of power cycle, cooling cogeneration, heating cogeneration and trigeneration decreases. In addition, it was shown that the effect of changing the turbine inlet pressure and ORC pump inlet temperature are insignificant on the exergy efficiencies of the power cycle, cooling cogeneration, heating cogeneration and trigeneration. Also, the study reveals that the significant sources of exergy destruction are the ORC evaporator, air heat exchanger at the SOFC inlet and heating process heat exchanger.  相似文献   

10.
A detailed system study on an integrated gasifier-SOFC test system which is being constructed for combined heat and power (CHP) application is presented. The performance of the system is evaluated using thermodynamic calculations. The system includes a fixed bed gasifier and a 5 kW SOFC CHP system. Two kinds of gas cleaning systems, a combined high and low temperature gas cleaning system and a high temperature gas cleaning system, are considered to connect the gasifier and the SOFC system. A complete model of the gasifier-SOFC system with these two gas cleaning systems is built and evaluated in terms of energy and exergy efficiencies. A sensitivity study is carried out to check system responses to different working parameters. The results of this work show that the electrical efficiencies of the gasifier-SOFC CHP systems with different gas cleaning systems are almost the same whereas the gasifier-SOFC CHP systems with the high temperature gas cleaning system offers higher heat efficiency for both energy and exergy.  相似文献   

11.
The woody biomass Stirling engine (WB-SEG) is an external combustion engine that outputs high-temperature exhaust gases. It is necessary to improve the exergy efficiency of WB-SEG from the viewpoint of energy cascade utilization. So, a combined system that uses the exhaust heat of WB-SEG for the steam reforming of city gas and that supplies the produced reformed gas to a proton exchange membrane fuel cell (PEM-FC) is proposed. The energy flow and the exergy flow were analyzed for each WB-SEG, PEM-FC, and WB-SEG/PEM-FC combined system. Exhaust heat recovery to preheat fuel and combustion air was investigated in each system. As a result, (a) improvement of the heat exchange performance of the woody biomass combustion gas and engine is observed, (b) reduction in difference in the reaction temperature of each unit, and (c) removal of rapid temperature change of reformed gas are required in order to reduce exergy loss of the system. The exergy efficiency of the WB-SEG/PEM-FC combined system is superior to EM-FC.  相似文献   

12.
An integrated tri-generation system incorporating a solid oxide fuel cell (SOFC) and a double-effect water/Lithium Bromide absorption chiller is presented in this paper. The proposed tri-generation system can provide power, cooling or heating simultaneously with a typical gas produced from a gasication process. The system conguration and design are discussed, and the energy and mass balances are obtained through the matrix representation method and integrated into a simulation program by MATLAB soft package. The developed model comprises of three modules: SOFC module, exhaust combusting and HRSG module, and the absorption chiller module. Validation of the SOFC model is performed by comparison with a single tubular cell of Siemens-Westinghouse, and a specific case study of the system is presented. For parametric analysis, the fuel utilization ratio, fuel flow ratio and air inlet temperature are investigated and the results are discussed in detail.  相似文献   

13.
冷热电联产系统的发展及前景   总被引:7,自引:0,他引:7  
1前言能源的价格、电网的稳定性、能量的品质、空气的品质以及全球气候的改变,是21世纪我们面临的严重问题。随着经济和社会的发展,这些问题将变得更加尖锐。在传统的利用燃料产生电力的过程中,将近三分之二的输入能量没有有效利用就被释放到环境中,能量损失十分严重。利用总能  相似文献   

14.
In this paper, a novel syngas-fed combined cogeneration plant, integrating a biomass gasifier, a molten carbonate fuel cell (MCFC), a heat recovery steam generator (HRSG) unit, a Stirling engine, and an organic Rankine cycle (ORC), is introduced and thermodynamically analyzed to recognize its potentials compared to the previous solo/combined systems. For the proposed system, energetic, exergetic as well as environmental evaluations are performed. Based on the results, the gasifier and the fuel cell have a significant contribution to the exergy destruction of the system. Through a parametric study, the current density and the stack temperature difference are known as the main effective factors on the plant performance. Meanwhile, dividing the whole system into three sub-models, i.e., model (1): power production plant including the gasifier and MCFC without including Stirling engine, HRSG, and ORC unit, model (2): the cogeneration system without ORC unit, and model (3): the whole cogeneration system, an environmental impact assessment is carried out regarding CO2 emission. Considering paper as biomass revealed that maximum value of exergy efficiency is 50.18% with CO2 emissions of 28.9 × 10−2 t.MWh−1 which compared to the solo MCFC system indicates 28.40% increase and 13.3 × 10−2 t.MWh−1 decrease in exergy efficiency and CO2 emission, respectively.  相似文献   

15.
An experimental investigation is performed to establish the optimal operating conditions of a porous media after-burner integrated with a 1 kW solid oxide fuel cell (SOFC) system fed by a natural gas reformer. The compositions of the anode off-gas and cathode off-gas emitted by the SOFC when operating with fuel utilizations in the range 0-0.6 are predicted using commercial GCTool software. The numerical results are then used to set the compositions of the anode off-gas and cathode off-gas in a series of experiments designed to clarify the effects of the fuel utilization, cathode off-gas temperature and excess air ratio on the temperature distribution within the after-burner. The experimental results show that the optimal after-burner operation is obtained when using an anode off-gas temperature of 650 °C, a cathode off-gas temperature of 390 °C, a flame barrier temperature of 700 °C, an excess air ratio of 2 and a fuel utilization of Uf = 0.6. It is shown that under these conditions, the after-burner can operate in a long-term, continuous fashion without the need for either cooling air or any additional fuel other than that provided by the anode off-gas.  相似文献   

16.
冷热电联供系统运行模式优化   总被引:1,自引:0,他引:1  
以最小运行费用和最小一次能耗率为目标函数,基于非线性规划和动态规划,利用MATLAB对冷热电联供系统的运行模式进行优化。通过与常规供能方式的比较,为建筑供能方案初设提供辅助设计。  相似文献   

17.
The performance analysis of an integrated system of glycerol supercritical water reforming and pressurized SOFC was presented. The use of different CO2 adsorption processes that include in situ and ex situ processes was compared to determine the suitable process for hydrogen and power generations. The influence of operating condition, e.g., temperature and pressure of reformer, supercritical water to glycerol (S/G) molar ratio, and calcium oxide to glycerol (CaO/G) molar ratio was examined. Then, the electrical performance of each integrated process was considered with respect to the SOFC conditions comprising temperature, pressure, and current density. The simulation results revealed that both processes have same favourable conditions for temperature and pressure operated at 800 °C and 240 atm, respectively. The suitable S/G and CaO/G molar ratios for in situ process are 10 and 2 whereas those for ex situ process are 20 and 1. Under these conditions, maximum hydrogen can be achieved as 87% and 75% for in situ and ex situ processes, respectively. When both integrated processes are operated at the optimal SOFC conditions as 900 °C, 4 atm, and current density of 10,000 A/m2, the SOFC efficiency of 71.56% and 62.12% can provide for in situ and ex situ processes, respectively.  相似文献   

18.
In energy systems, multi-generation including co-generation and tri-generation has gained tremendous interest in the recent years as an effective way of waste heat recovery. Solid oxide fuel cells are efficient power plants that not only generate electricity with high energy efficiency but also produce high quality waste heat that can be further used for hot and chilled water production. In this work, we present a concept of combined cooling, heating and power (CCHP) energy system which uses solar power as a primary energy source and utilizes a reversible solid oxide fuel cell (R-SOFC) for producing hydrogen and generating electricity in the electrolyser (SOEC) and fuel cell (SOFC) modes, respectively. The system uses “high temperature” metal hydride (MH) for storage of both hydrogen and heat, as well as “low temperature” MH's for the additional heat management, including hot water supply, residential heating during winter time, or cooling/air conditioning during summer time.The work presents evaluation of energy balances of the system components, as well as heat-and-mass transfer modelling of MH beds in metal hydride hydrogen and heat storage system (MHHS; MgH2), MH hydrogen compressor (MHHC; AB5; A = La + Mm, BNi + Co + Al + Mn) and MH heat pump (MHHP; AB2; A = Ti + Zr, BMn + Cr + Ni + Fe). A case study of a 3 kWe R-SOFC is analysed and discussed. The results showed that the energy efficiencies are 69.4 and 72.4% in electrolyser and fuel cell modes, respectively. The round-trip COP's of metal hydride heat management system (MHHC + MHHP) are close to 40% for both heating and cooling outputs. Moreover, the tri-generation leads to an improvement of 36% in round-trip energy efficiency as compared to that of a stand-alone R-SOFC.  相似文献   

19.
Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power.Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.  相似文献   

20.
The design and operation of combined cooling, heating and power (CCHP) systems are greatly dependent upon the seasonal atmospheric conditions, which determine thermal and power demands of buildings. This paper presents a mathematical analysis of CCHP system in comparison to separate system. The corresponding primary energy consumption in thermal demand management (TDM) and electrical demand management (EDM) operation modes are deduced. Three relative criteria, primary energy saving (PES), CO2 emission reduction (CO2ER), and annual total cost saving (ATCS) are employed to evaluate the respective performances of CCHP systems for a hypothetical building in five different climate zones from the technical, environmental and economic aspects. The results indicate that CCHP system in TDM mode in the cold area, where the building requires more heating during the year, achieves more benefit over separate system while CCHP system in EDM mode suits the building having stable thermal demand in mild climate zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号