首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our contribution demonstrates the technological potential of coupling Liquid Organic Hydrogen Carrier (LOHC)-based hydrogen storage and hydrogen-based Solid Oxide Fuel Cell (SOFC) operation. As SOFC operation creates waste heat at a temperature level of more than 600 °C, clever heat transfer from the SOFC operation to the LOHC dehydrogenation process is possible and results in an overall efficiency of 45% (electric output of SOFC vs. lower heating value of LOHC-bound hydrogen). Moreover, we demonstrate that LOHC vapour does not harm the operational stability of a typical 150 W SOFC short stack. By operating the stack with LOHC-saturated hydrogen, operation times of more than 10 years have been simulated without noticeable degradation of SOFC performance.  相似文献   

2.
In this paper, a novel process for the production of pure hydrogen from natural gas based on the integration of solid oxide fuel cells (SOFCs) and solid oxide electrolyzer cells (SOECs) is presented. In this configuration, the SOFC is fed by natural gas and provides electricity and heat to the SOEC, which carries out the separation of steam into hydrogen and oxygen. Depending on the system layout considered, the oxygen available at the SOEC anode outlet can be either mixed with the SOFC cathode stream in order to improve the SOFC performance or regarded as a co-product. Two configurations of the cell stack are studied. The first consists of a stack with the same number of SOFCs and SOECs working at the same current density. In this case, since in typical operating conditions the voltage delivered by the SOFC is lower than the one required by the SOEC, the required additional power is supplied by means of an electric grid connection. In the second case, the electricity balance is compensated by providing additional SOFCs to the stack, which are fed by a supplementary natural gas feed. Simulations carried out with Aspen Plus show that pure hydrogen can be produced with a natural gas to hydrogen LHV-efficiency that is about twice the value of a typical water electrolyzer and comparable to that of medium-scale reformers.  相似文献   

3.
Direct borohydride–hydrogen peroxide fuel cells (DBHPFCs) are attractive power sources for space applications. Although the cathode conditions are known to affect the system performance, the effect of the anode conditions is rarely investigated. Thus, in this study, a DBHPFC system was tested under various anode conditions, such as electrocatalyst, fuel concentration, and stabilizer concentration, to investigate their effects on the system performance. A virtual DBHPFC system was analyzed based on the experimental data obtained from fuel cell tests. The anode electrocatalyst had a considerable effect on the mass and electrochemical reaction rate of the fuel cell system, but had minimal effect on the decomposition reaction rate. The NaBH4 concentration greatly influenced the mass and decomposition reaction rate of the fuel cell system; however, it had minimal impact on the electrochemical reaction rate. The NaOH concentration affected the electrochemical reaction rate, decomposition reaction rate, and mass of the fuel cell system. Therefore, the significant effects of the anode conditions on the electrochemical reaction rate, decomposition reaction rate, and mass of the fuel cell system prompt the need for their careful selection through fuel cell tests and system analysis.  相似文献   

4.
A SOFC based commercial μ-CHP system is characterized by Electrochemical Impedance Spectroscopy, using a 24 full factorial test plan. The studied factors are: natural gas input power, ratio between oxygen and natural gas flow rates at the reformer inlet, stack average temperature and average operating cell voltage. Six replicates are performed in the domain centre. We performed equivalent circuit analysis and extracted three responses from each spectrum: ohmic resistance together with the two parameters of the CPE used in the model.However, one of our experiment is an outlier. To circumvent this problem, two methods described in the literature were applied: recalculation of missing response and introduction of a dynamic variable. Due their unsatisfactory results, we developed an innovative approach combining an iterative fitting of the multilinear model underlying any factorial design and an N-way ANOVA. Our method is successfully validated on the different 24−1 fractional designs deriving from the full factorial one.The only impacted response is the ohmic resistance. It increases as temperature decreases or as applied voltage increases. It is impacted by a strong synergistic effect of pressure and temperature and a compensating effect of pressure and applied voltage. No significant quadratic effect is observed.  相似文献   

5.
A general electrode–electrolyte-assembly (EEA) model has been developed, which is valid for different designs of solid oxide fuel cells (SOFCs) operating at different temperatures. In this study, it is applied to analyze the performance characteristics of planar anode-supported SOFCs. One of the novel features of the present model is its treatment of electrodes. An electrode in the present model is composed of two distinct layers referred to as the backing layer and the reaction zone layer. The other important feature of the present model is its flexibility in fuel, having taking into account the reforming and water–gas shift reactions in the anode. The coupled governing equations of species, charge and energy along with the constitutive equations in different layers of the cell are solved using finite volume method. The model can predict all forms of overpotentials and the predicted concentration overpotential is validated with measured data available in literature. It is found that in an anode-supported SOFC, the cathode overpotential is still the largest cell potential loss mechanism, followed by the anode overpotential at low current densities; however, the anode overpotential becomes dominant at high current densities. The cathode and electrolyte overpotentials are not negligible even though their thicknesses are negligible relative to the anode thickness. Even at low fuel utilizations, the anode concentration overpotential becomes significant when chemical reactions (reforming and water–gas shift) in the anode are not considered. A parametric study has also been carried out to examine the effect of various key operating and design parameters on the performance of an anode-supported planar SOFCs.  相似文献   

6.
A single domain approach to resolving liquid saturation jumps and the water introduction rate within a flowing electrolyte - direct methanol fuel cell is presented. The derivation demonstrates the importance of retaining the porous property dependency on the capillary pressure gradient to obtain a liquid saturation jump. A proposed pulse function was shown to be a useful tool to approximating the macroscopic variations in porous properties across mating layers. The presented approach compared well against analytical solutions and experimental data. The overall performance of the fuel cell was shown to be rather insensitive to the choice of pulse diffusion index, suggesting that large scale simulations could reduce their computational cost with increased diffusion, without significantly affecting their predicted performance. Furthermore, the non-uniformity in the flowing electrolyte channel’s (FEC’s) liquid saturation distribution caused a non-uniform FEC outlet velocity profile. The higher FEC outlet velocity suggests that previous FE-DMFC models under-predicted the amount of methanol removal from the fuel cell.  相似文献   

7.
Intermediate temperature solid oxide fuel cells (IT-SOFCs) using chromia-forming alloy interconnect requires the development of cathode not only with high electrochemical activity but also with the high resistance or tolerance towards Cr deposition and poisoning. This is due to the fact that, at SOFC operating temperatures, volatile Cr species are generated over the chromia scale, poisoning the cathodes such as (La,Sr)MnO3 (LSM) and (La,Sr)(Co,Fe)O3 (LSCF) and causing a rapid degradation of the cell performance. Thus, a fundamental understanding of the interaction between the Fe–Cr alloys and SOFC cathode is essential for the development of high performance and stable SOFCs. The objective of this paper is to critically review the progress and particularly the work done in the last 10 years in this important area. The mechanism and kinetics of the Cr deposition and Cr poisoning process on the cathodes of SOFCs are discussed. Chromium deposition at SOFC cathodes is most likely dominated by the chemical reduction of high valence Cr species, facilitated by the nucleation agents on the electrode and electrolyte surface and/or at the electrode/electrolyte interface, i.e., the nucleation theory. The driving force behind the nucleation theory is the surface segregation and migration of cationic species on the surface of perovskite oxide cathodes. Overwhelming evidences indicate that the surface segregation plays a critical role in the Cr deposition. The prospect of the development in the Cr-tolerant cathodes for SOFCs is presented.  相似文献   

8.
The effect of the catalyst microstructure on a 5 cm2 PEM fuel cell performance is numerically investigated. The catalyst layer composition and properties (i.e. ionomer volume fraction, platinum loading, particle radius, electrochemical active area and carbon support type), and the mass transport resistance due to the ionomer and liquid water surrounding the catalyst particles, are incorporated into the model. The effects of the above parameters are discussed in terms of the polarization curves and the local distributions of the key parameters. An optimum range of the ionomer volume fraction was found and a gain of 39% in the performance was achieved. As regards the platinum loading and catalyst particle radius, the results showed that a higher loading and a smaller radius leads to an increase in the PEMFC performance. Further, the influence of the electrochemical active area produces an overall increase of 22% in current density and this was due to the use of a new material developed as support for Pt particles, an iodine doped graphene, which has better electrical contacts and additional pathways for water removal. Using this parameter, the numerical model has been validated and good agreement with experimental data was achieved, thus giving confidence in the model as a design tool for future improvements of the catalyst structure.  相似文献   

9.
Solid oxide fuel cell (SOFC) is a complicated system with heat and mass transfer as well as electrochemical reactions. The real-time dynamic simulation of SOFC is still a challenge up to now. This paper develops a one-dimensional mathematical model for direct internal reforming solid oxide fuel cell (DIR-SOFC). The volume–resistance (VR) characteristic modeling technique is introduced into the modeling of the SOFC system. Based on the VR modeling technique and the modular modeling idea, ordinary differential equations meeting the quick simulation are obtained from partial differential equations. This model takes into account the variation of local gas properties. It can not only reflect the distributed parameter characteristics of SOFC, but also meet the requirement of the real-time dynamic simulation. The results indicate that the VR characteristic modeling technique is valuable and viable in the SOFC system, and the model can be used in the quick dynamic and real-time simulation.  相似文献   

10.
Abstract

A reversible solid oxide fuel cell system can act as an energy storage device by storing energy in the form of hydrogen and heat, buffering intermittent supplies of renewable electricity such as tidal and wave generation. The most widely used electrodes for the cell are lanthanum strontium manganate–yttria stabilised zirconia and Ni–yttria stabilised zirconia. Their microstructure depends on the fabrication techniques, and determines their performance. The concept and efficiency of reversible solid oxide fuel cells are explained, along with cell geometry and microstructure. Electrode fabrication techniques such as screen printing, dip coating and extrusion are compared according to their advantages and disadvantages, and fuel cell system commercialisation is discussed. Modern techniques used to evaluate microstructure such as three-dimensional computer reconstruction from dual beam focused ion beam–scanning electron microscopy or X-ray computed tomography, and computer modelling are compared. Reversible cell electrode performance is measured using alternating current impedance on symmetrical and three electrode cells, and current/voltage curves on whole cells. Fuel cells and electrolysis cells have been studied extensively, but more work needs to be done to achieve a high performance, durable reversible cell and commercialise a system.  相似文献   

11.
With the global sustainability transition in energy, hydrogen fuel cell (HFC) applications currently have important niche roles to play across several industrial sectors. Theorists examining this innovative activity have identified key socio-technical factors affecting the nature and pace of change. One functional approach to innovation, Technology-Specific Innovation Systems (TSISs), places national HFC Technological Innovation Systems (TISs) within a framework of a global HFC TSIS. This analytical approach suggests that HFC innovation can start anywhere in space. However, in a case study of HFC innovation and diffusion in the UK covering sixty years’ activity, this theoretical assumption is challenged. Event history analysis and interviews using a neofunctionalist TSIS approach suggest that positive feedback was on the brink of occurring in the UK HFC TIS by 2012. When additional organisational and spatial indicators are added, the evidence on the ground does not support the aspatial assumptions that underlie TIS heuristic thinking. Rather, it suggested that type of investment funding and spatial location can influence HFC innovation. In this context, the implications for HFC policy in the UK are discussed.  相似文献   

12.
In this paper, the performance evaluation of a solid oxide fuel cell (SOFC)–micro gas turbine (MGT) hybrid power generation system under the part-load operation was studied numerically. The present analysis code includes distributed parameters model of the cell stack module. The conversions of chemical species for electrochemical process and fuel reformation process are considered. Besides the temperature distributions of the working fluids and each solid part of cell module by accounting heat generation and heat transfers, are taken into calculation. Including all of them, comprehensive energy balance in the cell stack module is calculated. The variable MGT rotational speed operation scheme is adopted for the part-load operation. It will be made evident that the power generation efficiency of the hybrid system decreases together with the power output. The major reason for the performance degradation is the operating temperature reduction in the SOFC module, which is caused by decreasing the fuel supply and the heat generation in the cells. This reduction is also connected to the air flow rate supplement. The variable MGT rotational speed control requires flexible air flow regulations to maintain the SOFC operating temperature. It will lead to high efficient operation of the hybrid system.  相似文献   

13.
There is an ever – increasing demand for more powerful, compact and longer – life power modules for portable electronic devices for leisure, communication and computing. Micro fuel cells have the potential to replace battery packs for portable electronic appliances because of their high power density, longer operating and standby times, and substantially shorter recharging times. However, fuel cells have stringent operating requirements, including no fuel leakage, water formed in the electrochemical reactions, heat dissipation, robustness, easy and safe use, and reliability. Due to the large market potential, several companies are currently involved in the development of micro fuel cells. For application of fuel cells as a battery charger or in a battery replacement market, the cells require simplification in terms of their construction and operation and must have volumetric power densities equivalent to or better than those of existing battery power packs. This paper discusses results of investigation on methods and materials for direct hydrogen micro fuel cells as well as the lifetime performance of single cells and 2 We arrays. The paper also reviews the global technology development status for the direct hydrogen micro fuel cell and compares its salient features with other types of micro fuel cells.  相似文献   

14.
《Journal of power sources》2002,105(2):222-227
A general thermodynamic model has shown that combined fuel cell cycles may reach an electric-efficiency of more than 80%. This value is one of the targets of the Department of Energy (DOE) solid oxide fuel cell–gas turbine (SOFC–GT) program. The combination of a SOFC and GT connects the air flow of the heat engine and the cell cooling. The principle strategy in order to reach high electrical-efficiencies is to avoid a high excess air for the cell cooling and heat losses. Simple combined SOFC–GT cycles show an efficiency between 60 and 72%. The combination of the SOFC and the GT can be done by using an external cooling or by dividing the stack into multiple sub-stacks with a GT behind each sub-stack as the necessary heat sink. The heat exchangers (HEXs) of a system with an external cooling have the benefit of a pressurization on both sides and therefore, have a high heat exchange coefficient. The pressurization on both sides delivers a low stress to the HEX material. The combination of both principles leads to a reheat (RH)-SOFC–GT cycle that can be improved by a steam turbine (ST) cycle. The first results of a study of such a RH-SOFC–GT–ST cycle indicate that a cycle design with an efficiency of more than 80% is possible and confirm the predictions by the theoretical thermodynamic model mentioned above. The extremely short heat-up time of a thin tubular SOFC and the market entrance of the micro-turbines give the option of using these SOFC–GT designs for mobile applications. The possible use of hydrocarbons such as diesel oil is an important benefit of the SOFC. The micro-turbine and the SOFC stack will be matched depending on the start-up requirements of the mobile system. The minimization of the volume needed is a key issue. The efficiency of small GTs is lower than the efficiency of large GTs due to the influence of the leakage within the stages of GTs increasing with a decreasing size of the GT. Thus, the SOFC module pressure must be lower than in larger stationary SOFC–GT systems. This leads to an electrical-efficiency of 45% of a cycle used as a basis for a design study. The result of the design study is that the space available in a mid-class car allows the placement of such a system, including space reserves. A further improvement of the system might allow an electrical-efficiency of about 55%.  相似文献   

15.
Sluggish kinetics for oxygen reduction reaction (ORR) is one of the greatest challenges limiting the electrochemical performance of solid oxide fuel cells (SOFCs). Surface modification through solution infiltration is recognized as a promising approach to boost the performance of the SOFCs. The conventional infiltration of electrocatalyst in porous scaffold results in discrete particles of active catalyst. However, in this study, we report a novel technique to produce the nano-tailored film of Sm0.5Sr0.5CO3-δ (SSC) active catalyst on to La0.6Sr0.4CoO3-δ (LSC) cathode of SOFC through controlling the drying rate during the infiltration process which resulted in a continous film like coating of SSC. The SOFC with LSC cathode containing SSC film-like nanostructure showed a two-fold performance increment and an excellent durability compared to the LSC cathode prepared through conventional methods. The higher performance of the film-like nanostructured LSC-SSC cathode is attributed to the remarkable reduction in the area-specific ohmic and polarization resistance due to the extension of cathode reaction sites and shorter diffusion lengths, thus, facilitating the ORR.  相似文献   

16.
There is an enormous driving force in solid oxide fuel cells (SOFCs) to reduce the operating temperatures from high temperatures (800–1000 °C) to intermediate and low temperatures (400–800 °C) in order to increase the durability, improve thermal compatibility and thermal cycle capability, and reduce the fabrication and materials costs. One of the grand challenges is the development of cathode materials for intermediate and low temperature SOFCs with high activity and stability for the O2 reduction reaction (ORR), high structural stability as well as high tolerance toward contaminants like chromium, sulfur and boron. Lanthanum strontium cobalt ferrite (LSCF) perovskite is the most popular and representative mixed ionic and electronic conducting (MIEC) electrode material for SOFCs. LSCF-based materials are characterized by high MIEC properties, good structural stability and high electrochemical activity for ORR, and have played a unique role in the development of SOFCs technologies. However, there appears no comprehensive review on the development and understanding of this most important MIEC electrode material in SOFCs despite its unique position in SOFCs. The objective of this article is to provide a critical and comprehensive review in the structure and defect chemistry, the electrical and ionic conductivity, and relationship between the performance, intrinsic and extrinsic factors of LSCF-based electrode materials in SOFCs. The challenges, strategies and prospect of LSCF-based electrodes for intermediate and low temperature SOFCs are discussed. Finally, the development of LSCF-based electrodes for metal-supported SOFCs and solid oxide electrolysis cells (SOECs) is also briefly reviewed.  相似文献   

17.
A series of barium aluminosilicate glasses modified with CaO and B2O3 were prepared and evaluated with respect to their suitability in sealing planar solid oxide fuel cells (SOFCs). At a target operating temperature of 750 °C, the long-term coefficient of thermal expansion (CTE) of one particular composition (35 mol% BaO, 15 mol% CaO, 10 mol% B2O3, 5 mol% Al2O3, and bal. SiO2) was found to be particularly stable, due to devitrification to a mixture of glass and ceramic phases. This sealant composition exhibits minimal chemical interaction with the yttria-stabilized zirconia electrolyte, yet forms a strong bond with this material. Interactions with metal components were found to be more extensive and depended on the composition of the metal oxide scale that formed during sealing. Generally alumina-scale formers exhibited a more compact reaction zone with the glass than chromia-scale forming alloys. Mechanical measurements conducted on the bulk glass–ceramic and on seals formed using these materials indicate that the sealant is anticipated to display adequate long-term strength for most conventional stationary SOFC applications.  相似文献   

18.
In this study, we propose an improvement in the sulfur tolerance of nickel-yttria stabilized zirconia (Ni-YSZ) anodes for solid oxide fuel cells (SOFCs) by simultaneously employing optimized operating conditions and microstructural modifications. An electrolyte supported SOFC is operated at 20 ppm H2S impurity at 750 °C for 20 h degradation and 10 h recovery test. The current cycles with a higher amplitude and small pulse time during the constant current operation are beneficial for the mitigation of sulfur poisoning. The effect of humidity on the sulfur degradation of Ni-YSZ anode is also studied. The synergetic effect of microstructure modification and current cycling conditions improves the sulfur tolerance of Ni-YSZ anode. It has been found that, when an anode with a modified microstructure by infiltrated CeO2 and Yb2O3 nanoparticles is operated on 20 ppm H2S poisoned gas at 10% relative humidity and the optimum pulsed current cycling conditions, about 7 times less degradation of the SOFC performance is observed. This study shows that at lower H2S concentration, a stable operation of a SOFC with minimum degradation can be achieved with the combination of optimization of operating conditions and modification of the anode microstructure.  相似文献   

19.
A Ni–Fe alloy layer in combination with a cermet layer composed of Ni and yttria-stabilized zirconia (YSZ) cermet layer was explored as an anode for solid oxide fuel cells (SOFCs). The cell supported on the dual-layered anode with straight pore paths showed a maximum power density of 1070 mW cm?2 at 800 °C, while 737 mW cm?2 for the one supported on the anode with tortuous pore paths. Electrochemical impedance measurement and distribution of relaxation time analysis revealed that the straight pore paths allowed fast gas phase transport thus mitigating the concentration polarization, and improved the accessibility of electrochemical reaction sites hence reducing the activation polarization. The cell supported on the Ni-YSZ/Ni–Fe dual-layered anode remained intact after 8 redox cycles, whereas the cell supported on the Ni-YSZ single layered anode failed after one redox cycle. It is concluded that the Ni-YSZ/Ni–Fe dual-layered composite explored in the present study is suitable for use as the supporting anode for SOFCs.  相似文献   

20.
Fe-, Ni- and Zn- doped La0·9Sr0·1CoO3 are prepared and a single-component solid oxide fuel cell composed of 30 wt% perovskite oxide and 70 wt% samarium-doped ceria (SDC)-(Li0·67Na0.33)2CO3 is fabricated and characterized. When doping with either Fe, Ni or Zn, most cations occupy the Co3+ sites. X-ray photoelectron spectroscopy and oxygen temperature-programmed desorption characterizations show that Zn-doped La0·9Sr0·1CoO3 exhibits notably high surface oxygen, causing higher catalytic activity for oxygen reduction reaction (ORR) than that of nondoped La0·9Sr0·1CoO3. Fe or Ni doping into La0·9Sr0·1CoO3 decreases surface oxygen, resulting in a lower catalytic activity toward ORR than La0·9Sr0·1CoO3. Furthermore, X-ray diffraction, temperature-programmed reduction and transmission electron microscopy characterizations prove that after reduction, Fe-doped La0·9Sr0·1CoO3 is reduced to Co0·72Fe0.28 alloy-oxide core-shell nanoparticles, resulting in a high catalytic activity for hydrogen oxygen reaction (HOR). However, NiCo2O4 are formed during the reduction of Ni-doped La0·9Sr0·1CoO3, exhibiting a low catalytic activity for the HOR. Similarly, the low catalytic activity of reduced Zn-doped La0·9Sr0·1CoO3 for the HOR is caused by the formation of ZnCo2O4. A single component fuel cell composed with Fe-doped La0·9Sr0·1CoO3-SDC-(Li0·67Na0.33)2CO3 exhibits the highest Pmax of 239.1 mW cm−2 at 700 °C with H2 as fuel, indicating that HOR processes are rate-determining steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号