首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The authors have proposed a new combustion process called the Plume Ignition Combustion Concept (PCC), in which with an optimal combination of hydrogen injection timing and controlled jet geometry, the plume of the hydrogen jet is spark-ignited to accomplish combustion of a rich mixture. This combustion process markedly improves thermal efficiency by reducing cooling loss, which is essential for increasing thermal efficiency in a hydrogen engine while maintaining high power. In order to improve thermal efficiency and reduce NOx formation further, PCC was applied to a lean-burn regime to burn a leaner mixture globally. In this study, the effect of supercharging which was applied to recover the reduced output power due to the leaner mixture on improving thermal efficiency was confirmed along with clarifying the cause.  相似文献   

2.
A new combustion process called the Plume Ignition Combustion Concept (PCC), in which the plume tail of the hydrogen jet is spark-ignited immediately after the completion of fuel injection to accomplish combustion of a rich mixture has been proposed by the authors. This PCC combustion process markedly reduces nitrogen oxides (NOx) emissions in the high-output region while maintaining high levels of thermal efficiency and power. On the other hand, as burning lean mixture of fuel and air is the conventional way to improve thermal efficiency and reduce NOx, a high λ premixed mixture of hydrogen and air formed by injecting hydrogen in the early stage of the compression stroke has been used in direct-injection hydrogen engines. It was recently reported, however, that this mixture condition does not always offer expected improved thermal efficiency under even lean mixture conditions by increasing unburned hydrogen emissions caused by incomplete flame propagation in the non-uniform and extremely lean portion of the mixture. In this study, the effect of retarding the injection timing to late in the compression stroke but slightly advanced from original PCC was examined as a way of reducing unburned hydrogen emissions and improving thermal efficiency. These effects result from a centroidal axially stratified mixture that positions a fairly rich charge near the spark plug. This stratified mixture is presumably effective in reducing incomplete flame propagation thought to be the cause of unburned hydrogen emissions and also promoting increasing burning velocity of the mixture that improve thermal efficiency. Finally, this research is characterized by measuring the hydrogen fuel concentration at the point and the time of spark ignition quantitatively by spark-induced breakdown spectroscopy in order to identify the changes in mixture ratio mentioned above caused by the parameters involved.  相似文献   

3.
氢发动机性能的改进   总被引:6,自引:0,他引:6  
本文论述了氢发动机的最新研究成果,着重描述了氢的储存和混合气形成及点火等技术问题,并提出了相应的措施。试验表明,采用氢的高压喷射、火花点火,并调整最佳点火正时,就能获得良好的经济和动力性能  相似文献   

4.
Hydrogen can be readily used in spark ignition engines as a clean alternative to fossil fuels. However, the higher burning velocity and shorter quenching distance of hydrogen compared with hydrocarbons cause a larger heat transfer from the burning gas to the combustion chamber walls. Because of this cooling loss, the thermal efficiency of hydrogen-fueled engines is sometimes lower than that of conventionally fueled engines. Therefore, reducing the cooling loss is a crucial element in improving the thermal efficiency of hydrogen combustion engines. Previous research by the author and others has proposed the direct injection stratified charge as a technique for reducing the cooling loss in hydrogen combustion and shown its effect in reducing cooling loss through experiments in a constant volume combustion vessel. However, it is known that a reduction in cooling loss does not always improve thermal efficiency due to a simultaneous increase in the exhaust heat loss. This paper explains the relation between cooling loss reduction and thermal efficiency improvements by the direct injection stratified charge in hydrogen combustion engines.  相似文献   

5.
In this study, effects on a spark ignition engine of mixtures of hydrogen and methane have been experimentally considered. This article presents the results of a four-cylinder engine test with mixtures of hydrogen in methane of 0, 10, 20 and 30% by volume. Experiments have been made varying the equivalence ratio. Equivalence ratios have been selected from 0.6 to 1.2. Each fuel has been investigated at 2000 rpm and constant load conditions. The result shows that NO emissions increase, HC, CO and CO2CO2 emission values decrease and brake thermal efficiency (BTE) values increase with increasing hydrogen percentage.  相似文献   

6.
In this paper, the performance and emission characteristics of a conventional twin-cylinder, four stroke, spark-ignited (SI) engine that is running with methane–hydrogen blends have been investigated experimentally. The engine was modified to realize hydrogen port injection by installing hydrogen feeding line in the intake manifolds. The experimental results have been demonstrated that the brake specific fuel consumption (BSFC) increased with the increase of hydrogen fraction in fuel blends at low speeds. On the other hand, as hydrogen percentage in the mixture increased, BSFC values decreased at high speeds. Furthermore, brake thermal efficiencies were found to decrease with the increase in percentage of hydrogen added. In addition, it has been found that CO2, NOx and HC emissions decrease with increasing hydrogen. However, CO emissions tended to increase with the addition of hydrogen generally increase. It has been showed that hydrogen is a very good choice as a gasoline engine fuel. The data are also very useful for operational changes needed to optimize the hydrogen fuelled SI engine design.  相似文献   

7.
In this study, investigations on the hydrogen usage in spark ignition (SI) rotary engines are reviewed to assess trend researches. Many scientists conducted various studies to investigate performance, emission and combustion characteristics of hydrogen technology. The studies generally focused on their usage as an additive fuel. It can be seen that hydrogen usage in SI engine are very promising for their lower emissions, more efficient combustion, and higher power output. Nevertheless, hydrogen utilization may cause combustion problems such as back fire, auto and pre-ignition. Moreover, because of their small molecular structure hydrogen storage is another issue. Especially, hydrogen blending is a particular solution and this makes hydrogen gas tolerable for storage and transporting problem. In the recent studies, hydrogen usage in rotary engine is found well suited and feasible by scientists. Combustion difficulties caused by long and narrow shaped combustion chamber and long quenching distance of this type of engine can be solved by hydrogen addition. However, absence of a light, safe and low cost storage technology are still bottlenecks for their usage and waiting for solution.  相似文献   

8.
In the present study, a single-cylinder four-stroke SI engine was operated with LPG (C4H10/C3H8, 70:30), hydrogen and methane mixture (H2/CH4, 30:70). Experiments were conducted at excess air ratio between 0.8 and 1.5. Spark timing was varied from 14 to 35° CA BTDC under a constant load of 6 Nm at 1400 rpm.  相似文献   

9.
    
  相似文献   

10.
The experimental study was carried out on a multi-cylinder spark ignition engine fueled with hydrogen for analyzing the effect of knocking on backfire and its control by varying operating parameters. The experimental tests were conducted with constant speed at varied equivalence ratio. The equivalence ratio of 0.82 was identified as backfire occurring equivalence ratio (BOER). The backfire was identified by high pitched sound and rise in in-cylinder pressure during suction stroke. In order to analyze backfire at equivalence ratio of 0.82, the combustion analysis was carried out on cyclic basis. Based on the severity of in-cylinder pressure during suction stroke, the backfire can be divided into two categories namely low intensity backfire (LIB) and high intensity backfire (HIB). From this study, it is observed that there is frequent LIB in hydrogen fueled spark ignition engine during suction stroke, which promotes instable combustion and thus knocking at the end of compression stroke. This knocking creates high temperature sources in the combustion chamber and thus causes HIB to occur in the subsequent cycle. A notable salient point emerged from this study is that combustion with knocking can be linked with backfire as probability of backfire occurrence decreases with reduction in chances of knocking. Retarding spark timing and delaying injection timing of hydrogen were found to reduce the chances of backfire occurrence. The backfire limiting spark timing (BLST) and backfire limiting injection timing (BLIT) were found as 12 0bTDC and 40 0aTDC respectively.  相似文献   

11.
电控单点汽油喷射系统应用于492Q系列发动机中的研究   总被引:1,自引:0,他引:1  
本文首先研究了影响电控单点汽油喷射发动机性能的因素以及循环供油量的优化。然后,对492Q系列发动机的两种机型进行了电控,它们是BJ492Q和SY492Q-4型汽油机。结果表明:电控单点汽油喷射能有效地改善现有的492Q系列发动机,并使其性能得到提高。最后,从理论上来探讨汽油喷射改善发动机性能的机理。  相似文献   

12.
火花点火发动机燃用天然气掺氢混合燃料循环变动研究   总被引:1,自引:0,他引:1  
在火花点火天然气发动机上开展了不同掺氢比天然气掺氢混合燃料(氢气在混合燃料中的体积分数为0%、12%、23%、30%和40%)循环变动的试验研究,试验工况点对应于发动机中低负荷.分析了掺混氢气对天然气发动机循环变动的影响.研究结果表明:在稀燃条件下,随着掺氧比的增加,缸内最高压力、最大压力升高率以及平均指示压力均增加.随着掺氢比增加,缸内最高压力与其对应的曲轴转角之间和最大压力升高率与其对应的曲轴转角之间的相关性更强.在化学计量比或浓燃时,掺混氢气可以维持平均指示压力的循环变动系数在较低的水平.在稀燃时,平均指示压力的循环变动系数随掺氢比增加而降低.平均指示压力的循环变动系数达到10%所对应的过量空气系数随掺氢比增加而增加,表明天然气掺混氢气扩展了天然气发动机的稳定稀燃极限.  相似文献   

13.
围绕降低火花点火发动机的有害排放和提高其经济性,内燃机工作者对火花点发动机的燃烧进行了大量的基础研究工作。本文对其中若干问题的研究现状与动态进行了综述,以期对火花点火发动机预混燃烧的基础研究有一个最基本的了解。  相似文献   

14.
In the context of stringent exhaust gas emission regulations and requirements of increased efficiency, spark ignition (SI) engine research is looking at ever more detailed approaches, that cover a large number of processes. Ignition is one of the determining factors for repeatable combustion and its study is associated with extensive difficulties due to the turbulent nature of fluid motion. In order to provide data on the energy transfer and thermal conditions of the flame kernel in its initial stages, vibrational and rotational temperatures were evaluated using UV emission spectra detected in a SI engine. Stoichiometric operation with methane and hydrogen–methane blends was employed, so as to identify any influence of the fuel's molecular structure on these processes. The consolidated methodology for temperature estimation using the ratio between the emission bands of CN and OH, was implemented considering the effects of collisional broadening. Vibrational temperatures evaluation showed and evolution from 8000 K to 4000 K during the arc and glow phase specific for SI. The evolution of CN emission intensity confirmed its formation only in the initial stages of ignition, for which kernel temperature is high enough. Simulations of chemical equilibrium showed that the evaluation of temperatures based on spectroscopic measurements is in line with the decreasing trend correlated with the electrical current evolution, measured in the secondary circuit.  相似文献   

15.
    
The influence of hydrogen addition on spark knock characteristics is investigated under two engine speeds (2000 rpm and 4800 rpm) with experiments and chemical analyses to describe the effect of hydrogen addition on the high-speed knock as well as on the low-speed knock. The experimental results showed that the hydrogen addition of 15 HV% advances the knock limit by 3°CA at 2000 rpm, while by 1°CA at 4800 rpm, indicating that the knocking suppression effect weakens at higher engine speeds. The chemical kinetic analyses showed that hydrogen addition reduces the heat release rate under 900 K where the low temperature oxidation (LTO) appears, while it promotes the heat release rate above 900 K. These results suggest that the smaller effect of hydrogen addition at the higher engine speed is due to the smaller dependence of the LTO on the ignition process, with the shorter residence time below 900 K.  相似文献   

16.
In this work, spark-induced breakdown spectroscopy (SIBS) was employed to investigate the mixing process of a hydrogen jet in a constant-volume vessel. The local fuel concentration of the hydrogen jet was measured at several locations, using a SIBS sensor. A high-speed camera was used to visualize spark discharge fluctuations, and hydrogen jet concentration measurements were conducted simultaneously. Spectrally resolved atomic emissions from the plasma generated by the spark plug were examined to determine the local equivalence ratio. Direct visualization of the spark discharge provided useful information about the influence of spark discharge characteristics related to the spark timing. Using the developed SIBS sensor, atomic emission spectra were obtained from hydrogen Hα at 656 nm and nitrogen N (I) at 501 nm. Comparison of the intensity peaks of atomic emissions from hydrogen and nitrogen allows the local hydrogen concentration in a measured volume to be determined, and hence also the local equivalence ratio. The measurement results demonstrate the local variation in the equivalence ratio throughout the jet and along its axis. From the results, the spatial structure of the hydrogen jet affects the hydrogen/nitrogen mixing and could be clarified with SIBS technique when the spark is discharged.  相似文献   

17.
Adrian Irimescu   《Energy》2011,36(5):3030-3035
This paper describes the comparative advantages of using isobutanol as a fuel for SI (spark ignition) engines instead of ethanol. An experimental study of fuel conversion efficiency was performed on a port injection engine fueled with mixtures containing 10, 30 and 50% isobutanol blended with gasoline. Efficiency as well as performance levels were maintained within acceptable limits for all three types of fuel blends compared to running the engine on straight gasoline. These results show that isobutanol is an attractive drop-in fuel for SI engines, and can be blended with gasoline in much higher concentrations compared to ethanol, without any modifications to the fuel system or other engine components.  相似文献   

18.
The presented work concerns experimental research of a spark-ignition engine with variable compression ratio (VCR), adapted to dual-fuel operation, in which co-combustion of ammonia with hydrogen was conducted, and the energy share of hydrogen varied from 0% to 70%. The research was aimed at assessing the impact of the energy share of hydrogen co-combusted with ammonia on the performance, stability and emissions of an engine operating at a compression ratio of 8 (CR 8) and 10 (CR 10). The operation of the engine powered by ammonia alone, for both CR 8 and CR 10, is associated with either a complete lack of ignition in a significant number of cycles or with significantly delayed ignition and the related low value of the maximum pressure pmax. Increasing the energy share of hydrogen in the fuel to 12% allows to completely eliminate the instability of the ignition process in the combustible mixture, which is confirmed by a decrease in the IMEP uniqueness and a much lower pmax dispersion. For 12% of the energy share of hydrogen co-combusted with ammonia, the most favorable course of the combustion process was obtained, the highest engine efficiency and the highest IMEP value were recorded. The conducted research shows that increasing the H2 share causes an increase in NO emissions, for both analyzed compression ratios.  相似文献   

19.
Study of cycle-by-cycle variations in a spark ignition engine fueled with natural gas–hydrogen blends combined with exhaust gas recirculation (EGR) was conducted. The effects of EGR ratio and hydrogen fraction on engine cycle-by-cycle variations are analyzed. The results show that the cylinder peak pressure, the maximum rate of pressure rise and the indicated mean effective pressure decrease and cycle-by-cycle variations increase with the increase of EGR ratio. Interdependency between the above parameters and their corresponding crank angles of cylinder peak pressure is decreased with the increase of EGR ratio. For a given EGR ratio, combustion stability is promoted and cycle-by-cycle variations are decreased with the increase of hydrogen fraction in the fuel blends. Non-linear relationship is presented between the indicated mean effective pressure and EGR ratio. Slight influence of EGR ratio on indicated mean effective pressure is observed at low EGR ratios while large influence of EGR ratio on indicated mean effective pressure is demonstrated at high EGR ratios. The high test engine speed has lower cycle-by-cycle variations due to the enhancement of air flow turbulence and swirls in the cylinder. Increasing hydrogen fraction can maintain low cycle-by-cycle variations at high EGR ratios.  相似文献   

20.
    
Natural gas/hydrogen blends (NGHB) fuel is considered as one of the ideal alternative fuels for the rotary engine (RE), which can effectively reduce the carbon emissions of RE. Additionally, applying turbulent jet ignition (TJI) mode to RE can significantly increase the combustion rate. The purpose of this study is to numerically investigate the influence of hydrogen injection position (HIP) and hydrogen injection timing (HIT) on the in-cylinder mixture formation, flame propagation and NOx emission of a TJI hydrogen direct injection plus natural gas port injection RE. Therefore, in this paper, a test bench and a 3D dynamic simulation model of the turbulent jet ignition rotary engine (TJI-RE) fueled with NGHB were respectively established. Moreover, the reliability of the 3D simulation model was verified by experimental data. Furthermore, based on the established 3D model, the fuel distribution and flame propagation in the cylinder under different HIPs and HITs were calculated. The results indicated that the HIP and HIT could change the hydrogen distribution by altering the impact position, impact angle, and the strength of vortexes in the cylinder. To improve the flame propagation speed, more hydrogen should be distributed in the pre-chamber. Additionally, a higher concentration of hydrogen in the cylinder should be maintained above the jet orifice. This was not only conducive to the rapid formation of the initial fire core in the pre-chamber, but also significantly improved the combustion rate of the in-cylinder mixture. Compared with other hydrogen injection strategies, the hydrogen injection strategy by using the HIP at the middle of the cylinder block and the HIT of 190oCA(BTDC) could obtained the highest peak value of in-cylinder pressure and the highest NOx emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号