共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents an analysis and assessment study of an integrated system which consists of cryogenic air separation unit, polymer electrolyte membrane electrolyzer and reactor to produce ammonia for a selected case study application in Istanbul, Turkey. A thermodynamic analysis of the proposed system illustrates that electricity consumption of PEM electrolyzer is 3410 kW while 585.4 kW heat is released from ammonia reactor. The maximum energy and exergy efficiencies of the ammonia production system which are observed at daily average irradiance of 200 W/m2 are found as 26.08% and 30.17%, respectively. The parametric works are utilized to find out the impacts of inlet air conditions and solar radiation intensity on system performance. An increase in the solar radiation intensity results in a decrease of the efficiencies due to higher potential of solar influx. Moreover, the mass flow rate of inlet air has a substantial effect on ammonia production concerning the variation of generated nitrogen. The system has a capacity of 0.22 kg/s ammonia production which is synthesized by 0.04 kg/s H2 from PEM electrolyzer and 0.18 kg/s N2 from a cryogenic air separation unit. The highest exergy destruction rate belongs to PEM electrolyzer as 736.2 kW while the lowest destruction rate is calculated as 3.4 kW for the separation column. 相似文献
2.
Yunus Emre Yuksel Murat Ozturk Ibrahim Dincer 《International Journal of Hydrogen Energy》2018,43(9):4233-4243
In this paper, thermodynamic analysis and assessment of a novel geothermal energy based integrated system for power, hydrogen, oxygen, cooling, heat and hot water production are performed. This integrated process consists of (a) geothermal subsystem, (b) Kalina cycle, (c) single effect absorption cooling subsystem and (d) hydrogen generation and storage subsystems. The impacts of some design parameters, such as absorption chiller evaporator temperature, geothermal source temperature, turbine input pressure and pinch point temperature on the integrated system performance are investigated to achieve more efficient and more effective. Also, the impacts of reference temperature and geothermal water temperature on the integrated system performance are studied in detail. The energetic and exergetic efficiencies of the integrated system are then calculated as 42.59% and 48.24%, respectively. 相似文献
3.
This paper reports a thermodynamic analysis of filling a fuel tank with compressed gaseous hydrogen. The analysis is based on energy and exergy methods. A parametric study is performed to investigate the effect of initial conditions on the exergy destruction and exergy efficiency of filling processes. The transient filling process is studied to determine the temperature and pressure changes inside the storage tank during filling. 相似文献
4.
《International Journal of Hydrogen Energy》2022,47(5):3484-3503
In this paper, a proposal for a novel integrated Brayton cycle, supercritical plant, trans critical plant and organic Rankine cycle-based power systems for multi-generation applications are presented and analyzed thermodynamically. The plant can generate power, heating-cooling for residential applications, and hydrogen simultaneously from a single energy source. Both energetic and exergetic analyses are conducted on this multi-generation plant and its subsystems in order to evaluate and compare them thermodynamically, in terms of their useful product capabilities. The energetic and exergetic effectiveness of the multi-generation system are computed as 44.69% and 42.03%, respectively. After that, a parametric study on each of the subsystems of the proposed combined system is given in order to provide a deeper understanding of the working of these subsystems under different states. Lastly, environmental impact assessments are provided to raise environmental concerns for several operating conditions. For the base working condition, the results illustrate that the proposed plant has 0.5961, 0.0442, 0.6265 and 1.678 of exergo-environmental impact factor, exergy sustainability index, exergy stability factor and sustainability index, respectively. 相似文献
5.
A new configuration of solar energy-driven integrated system for ammonia synthesis and power generation is proposed in this study. A detailed dynamic analysis is conducted on the designed system to investigate its performance under different radiation intensities. The solar heliostat field is integrated to generate steam that is provided to the steam Rankine cycle for power generation. The significant amount of power produced is fed to the PEM electrolyser for hydrogen production after covering the system requirements. A pressure swing adsorption system is integrated with the system that separates nitrogen from the air. The produced hydrogen and nitrogen are employed to the cascaded ammonia production system to establish increased fractional conversions. Numerous parametric studies are conducted to investigate the significant parameters namely; incoming beam irradiance, power production using steam Rankine cycle, hydrogen and ammonia production and power production using TEGs and ORC. The maximum hydrogen and ammonia production flowrates are revealed in June for 17th hour as 5.85 mol/s and 1.38 mol/s and the maximum energetic and exergetic efficiencies are depicted by the month of November as 25.4% and 28.6% respectively. Moreover, the key findings using the comprehensive dynamic analysis are presented and discussed. 相似文献
6.
Bryan K. Boggs 《Journal of power sources》2009,192(2):573-581
On-board hydrogen storage and production via ammonia electrolysis was evaluated to determine whether the process was feasible using galvanostatic studies between an ammonia electrolytic cell (AEC) and a breathable proton exchange membrane fuel cell (PEMFC). Hydrogen-dense liquid ammonia stored at ambient temperature and pressure is an excellent source for hydrogen storage. This hydrogen is released from ammonia through electrolysis, which theoretically consumes 95% less energy than water electrolysis; 1.55 Wh g−1 H2 is required for ammonia electrolysis and 33 Wh g−1 H2 for water electrolysis. An ammonia electrolytic cell (AEC), comprised of carbon fiber paper (CFP) electrodes supported by Ti foil and deposited with Pt-Ir, was designed and constructed for electrolyzing an alkaline ammonia solution. Hydrogen from the cathode compartment of the AEC was fed to a polymer exchange membrane fuel cell (PEMFC). In terms of electric energy, input to the AEC was less than the output from the PEMFC yielding net electrical energies as high as 9.7 ± 1.1 Wh g−1 H2 while maintaining H2 production equivalent to consumption. 相似文献
7.
Yunus Emre Yuksel Murat Ozturk Ibrahim Dincer 《International Journal of Hydrogen Energy》2018,43(1):78-90
In this paper, we propose an integrated system aiming for hydrogen production with by-products using geothermal power as a renewable energy source. In analyzing the system, an extensive thermodynamic model of the proposed system is developed and presented accordingly. In addition, the energetic and exergetic efficiencies and exergy destruction rates for the whole system and its parts are defined. Due to the significance of some parameters, the impacts of varying working conditions are also investigated. The results of the energetic and exergetic analyses of the integrated system show that the energy and exergy efficiencies are 39.46% and 44.27%, respectively. Furthermore, the system performance increases with the increasing geothermal source temperature and reference temperature while it decreases with the increasing pinch point temperature and turbine inlet pressure. 相似文献
8.
《International Journal of Hydrogen Energy》2021,46(57):28980-28994
In order to meet the energy and fuel needs of societies in a sustainable way and hence preserve the environment, there is a strong need for clean, efficient and low-emission energy systems. In this regard, it is aimed to generate cleaner energy outputs, such as electricity, hydrogen and ammonia as well as some additional useful commodities by utilizing both methane gas and the waste heat of an integrated unit to the whole system. In this paper, a novel multi-generation plant is proposed to generate power, hydrogen and ammonia as a chemical fuel, drying, freshwater, heating, and cooling. For this reason, the Brayton cycle as prime unit using methane gas is integrated into the s-CO2 power cycle, organic Rankine cycle, PEM electrolyzer, freshwater production unit, cooling cycle and dryer unit. In order then to evaluate the designed integrated multigeneration system, thermodynamic analyses and parametric studies are performed, revealing that the energy and exergy efficiencies of the whole plant are found to be 69.08% and 65.42%. In addition, ammonia and hydrogen production rates have been found to be 0.2462 kg/s and 0.0631 kg/s for the methane fuel mass flow rate of 1.51 kg/s. Also, the effects of the reference temperature, pinch point temperature of superheater, combustion chamber temperature, gas turbine input pressure, and mass flow rate of fuel on numerous parameters and performance of the plant are investigated. 相似文献
9.
《International Journal of Hydrogen Energy》2019,44(29):15026-15044
Among the several candidates of hydrogen (H2) storage, liquid H2, methylcyclohexane (MCH), and ammonia (NH3) are considered as potential hydrogen carriers, especially in Japan, in terms of their characteristics, application feasibility, and economic performance. In addition, as the main mover in the introduction of H2, Japan has focused on the storage of H2, which can be categorized into these three methods. Each of them has advantages and disadvantages compared to the other. Liquid H2 faces challenges in the huge energy consumption that occurs during liquefaction and in the loss of H2 through boil-off during storage. MCH has its main obstacles in requiring a large amount of energy in dehydrogenation. Finally, NH3 encounters high energy demand in both synthesis and decomposition (if required). In terms of energy efficiency, NH3 is predicted to have the highest total energy efficiency, followed by liquid H2, and MCH. In addition, from the calculation of cost, NH3 with direct utilization (without decomposition) is considered to have the highest feasibility for massive adoption, as it shows the lowest cost (20–22 JPY·Nm3-H2 in 2050), which is close to the government target of H2 cost (20 JPY·Nm3-H2 in 2050). However, in the case that highly pure H2 (such as for fuel cell) is needed, liquid H2 looks to be promising (24–25 JPY·Nm3-H2 in 2050), compared with MCH and NH3 with decomposition and purification. 相似文献
10.
In this study, we thermodynamically analyze and experimentally investigate a continuous type hybrid photoelectrochemical H2 generation reactor. This system enhances solar spectrum use by employing photocatalysis and PV/T. Additionally, by replacing electron donors with electrodes to drive the photocatalysis, the potential of pollutant emissions are minimized. In this study, the present reactor is tested under electrolysis operation during which the present reactor is investigated under three different inlet mass flow rates (0.25, 0.50, and 0.75 g/s) and four different operating temperatures (20, 40, 60, and 80 °C). Some parametric studies are run by varying the environmental temperature between 0 and 40 °C. In addition, the impact of coating the membrane electrode assembly of the reactor with Cu2O is investigated. The present results show that the highest energy and exergy efficiencies occur at the environmental temperature of 20 °C which is about 60% and 50%, respectively. The Cu2O coated membrane gives a lot higher current readings, meaning that the coating makes the membrane more conductive and increases H2 production by permitting ions at a higher rate. 相似文献
11.
This paper analyzes an integrated HyS cycle (hybrid sulfur cycle), isobutane cycle and electrolyzer for hydrogen production. The operating parameters such as concentration, pressure and temperature are varied to investigate their effects on the energy and exergy efficiencies of the system with/without heat recovery and integration, as well as the decomposer and rate of hydrogen produced. A new heat exchanger network is also developed to recover heat within the HyS cycle in the most efficient manner. The exergy destruction rate in each component is analyzed and discussed. From the results, increasing the pressure is beneficial up to 3222 kPa, after which the performance remains constant. The exergy efficiency varies more significantly with operating parameters than the energy efficiency. The maximum exergy destruction occurs in the heat exchanger so this component should be the focus to enhance the overall performance of the system. 相似文献
12.
《International Journal of Hydrogen Energy》2020,45(41):20944-20955
In this paper, a new renewable energy-based cogeneration system for hydrogen and electricity production is developed. Three different methods for hydrogen production are integrated with Rankine cycle for electricity production using solar energy as an energy source. In addition, a simple Rankine cycle is utilized for producing electricity. This integrated system consists of solar steam reforming cycle using molten salt as a heat carrier, solar steam reforming cycle using a volumetric receiver reactor, and electrolysis of water combined with the Rankine cycle. These cycles are simulated numerically using the Engineering Equation Solver (EES) based on the thermodynamic analyses. The overall energetic and exergetic efficiencies of the proposed system are determined, and the exergy destruction and entropy generation rates of all subcomponents are evaluated. A comprehensive parametric study for evaluating various critical parameters on the overall performance of the system is performed. The study results show that both energetic and exergetic efficiencies of the system reach 28.9% and 31.1%, respectively. The highest exergy destruction rates are found for the steam reforming furnace and the volumetric receiver reforming reactor (each with about 20%). Furthermore, the highest entropy generation rates are obtained for the steam reforming furnace and the volumetric receiver reforming reactor, with values of 174.1 kW/K and 169.3 kW/K, respectively. Additional parametric studies are undertaken to investigate how operating conditions affect the overall system performance. The results report that 60.25% and 56.14% appear to be the highest exergy and energy efficiencies at the best operating conditions. 相似文献
13.
《International Journal of Hydrogen Energy》2019,44(7):3511-3526
Energy and exergy analyses of an integrated system based on anaerobic digestion (AD) of sewage sludge from wastewater treatment plant (WWTP) for multi-generation are investigated in this study. The multigeneration system is operated by the biogas produced from digestion process. The useful outputs of this system are power, freshwater, heat, and hydrogen while there are some heat recoveries within the system for improving efficiency. An open-air Brayton cycle, as well as organic Rankine cycle (ORC) with R-245fa as working fluid, are employed for power generation. Also, desalination is performed using the waste heat of power generation unit through a parallel/cross multi-effect desalination (MED) system for water purification. Moreover, a proton exchange membrane (PEM) electrolyzer is used for electrochemical hydrogen production option in the case of excess electricity generation. The heating process is performed via the rejected heat of the ORC's working fluid. The production rates for products including the power, freshwater, hydrogen, and hot water are obtained as 1102 kW, 0.94 kg/s, 0.347 kg/h, and 1.82 kg/s, respectively, in the base case conditions. Besides, the overall energy and exergy efficiencies of 63.6% and 40% are obtained for the developed system, respectively. 相似文献
14.
In this paper, we propose an integrated system, consisting of a heliostat field, a steam cycle, an organic Rankine cycle (ORC) and an electrolyzer for hydrogen production. Some parameters, such as the heliostat field area and the solar flux are varied to investigate their effect on the power output, the rate of hydrogen produced, and energy and exergy efficiencies of the individual systems and the overall system. An optimization study using direct search method is also carried out to obtain the highest energy and exergy efficiencies and rate of hydrogen produced by choosing several independent variables. The results show that the power and rate of hydrogen produced increase with increase in the heliostat field area and the solar flux. The rate of hydrogen produced increases from 0.006 kg/s to 0.063 kg/s with increase in the heliostat field area from 8000 m2 to 50,000 m2. Moreover, when the solar flux is increased from 400 W/m2 to 1200 W/m2, the rate of hydrogen produced increases from 0.005 kg/s to 0.018 kg/s. The optimization study yields maximum energy and exergy efficiencies and the rate of hydrogen produced of 18.74%, 39.55% and 1571 L/s, respectively. 相似文献
15.
Somayeh Toghyani Ehasn Baniasadi Ebrahim Afshari 《International Journal of Hydrogen Energy》2021,46(47):24271-24285
This paper investigates the performance of a hydrogen refueling system that consists of a polymer electrolyte membrane electrolyzer integrated with photovoltaic arrays, and an electrochemical compressor to increase the hydrogen pressure. The energetic and exergetic performance of the hydrogen refueling station is analyzed at different working conditions. The exergy cost of hydrogen production is studied in three different case scenarios; that consist of i) off-grid station with the photovoltaic system and a battery bank to supply the required electric power, ii) on-grid station but the required power is supplied by the electric grid only when solar energy is not available and iii) on-grid station without energy storage. The efficiency of the station significantly increases when the electric grid empowers the system. The maximum energy and exergy efficiencies of the photovoltaic system at solar irradiation of 850 W m-2 are 13.57% and 14.51%, respectively. The exergy cost of hydrogen production in the on-grid station with energy storage is almost 30% higher than the off-grid station. Moreover, the exergy cost of hydrogen in the on-grid station without energy storage is almost 4 times higher than the off-grid station and the energy and exergy efficiencies are considerably higher. 相似文献
16.
Yunus Emre Yuksel Murat Ozturk Ibrahim Dincer 《International Journal of Hydrogen Energy》2018,43(22):10268-10280
In this paper, the thermodynamic study of a combined geothermal power-based hydrogen generation and liquefaction system is investigated for performance assessment. Because hydrogen is the energy of future, the purpose of this study is to produce hydrogen in a clear way. The results of study can be helpful for decision makers in terms of the integrated system efficiency. The presented integrated hydrogen production and liquefaction system consists of a combined geothermal power system, a PEM electrolyzer, and a hydrogen liquefaction and storage system. The exergy destruction rates, exergy destruction ratios and exergetic performance values of presented integrated system and its subsystems are determined by using the balance equations for mass, energy, entropy, energy and exergy and evaluated their performances by means of energetic and exergetic efficiencies. In this regard, the impact of some design parameters and operating conditions on the hydrogen production and liquefaction and its exergy destruction rates and exergetic performances are investigated parametrically. According to these parametric analysis results, the most influential parameter affecting system exergy efficiency is found to be geothermal source temperature in such a way that as geothermal fluid temperature increases from 130 °C to 200 °C which results in an increase of exergy efficiency from 38% to 64%. Results also show that, PEM electrolyzer temperature is more effective than reference temperature. As PEM electrolyzer temperature increases from 60 °C to 85 °C, the hydrogen production efficiency increases from nearly 39% to 44%. 相似文献
17.
A multigeneration system based on solar thermal energy associated with hot and cold thermal storage is designed and analyzed energetically and exergetically. The system produces electricity, a heating effect, a cooling effect, hydrogen, and dry sawdust biomass as outputs by means of organic Rankine cycles, a heat pump, two absorption chillers, an electrolyser, and a belt dryer. The intermittent behavior of the renewable energy source is addressed through the incorporation of hot and cold thermal storage systems to operate an organic Rankine cycle and provide cooling at night. The performance assessment indicates that the overall (day and night) energy and exergy efficiencies are 20.7% and 13.7%, respectively. The majority of the total exergy destruction is attributable to the sawdust belt dryer, at about 64.0%. 相似文献
18.
《International Journal of Hydrogen Energy》2020,45(9):5608-5628
The present study develops a new solar and geothermal based integrated system, comprising absorption cooling system, organic Rankine cycle (ORC), a solar-driven system and hydrogen production units. The system is designed to generate six outputs namely, power, cooling, heating, drying air, hydrogen and domestic hot water. Geothermal power plants emit high amount of hydrogen sulfide (H2S). The presence of H2S in the air, water, soils and vegetation is one of the main environmental concerns for geothermal fields. In this paper, AMIS(AMIS® - acronym for “Abatement of Mercury and Hydrogen Sulphide” in Italian language) technology is used for abatement of mercury and producing of hydrogen from H2S. The present system is assessed both energetically and exergetically. In addition, the energetic and exergetic efficiencies and exergy destruction rates for the whole system and its parts are defined. The highest overall energy and exergy efficiencies are calculated to be 78.37% and 58.40% in the storing period, respectively. Furthermore, the effects of changing various system parameters on the energy and exergy efficiencies of the overall system and its subsystems are examined accordingly. 相似文献
19.
In this paper, a solar based electrochemical system is designed, built and tested to synthesize ammonia and hydrogen from nitrogen and saturated steam. Ammonia can serve as a sustainable fuel and is in heavy demand by the fertilizer industry. However, the conventional methods rely on hydrogen produced from fossil fuels. Hydrogen can be supplied back by implementing fuel cells and feeding electricity back to the system, directed to the conventional ammonia production methods as a reactant, or sold as a fuel. A simple and direct system is studied to pose a sustainable option for ammonia and hydrogen production. Very high concentrations of Nano iron catalyst are used to promote the concentration of ammonia at the output. The reactor is designed for continuous flow and can be disassembled for varying tests and scenarios. The maximum concentration of ammonia is found to be 950 ppm measured with excess reactant supply. Increasing nitrogen flow rates along with decreasing steam flow rates render increasing concentration results. The system at optimum conditions consumes 650 mA at 1.7 V. The low power requirements and valuable products of the system encourage further studies. Additionally, a solar energy based system is proposed as a renewable approach to ammonia synthesis with a fuel cell component to increase the efficiency by reducing the power consumption to 60% of its original value. 相似文献
20.
In this paper we study an integrated PV/T absorption system for cooling and hydrogen production based on U.A.E weather data. Effect of average solar radiation for different months, operating time of the electrolyzer, air inlet temperature and area of the PV module on power and rate of heat production, energy and exergy efficiencies, hydrogen production and energetic and exergetic COPs are studied. It is found that the overall energy and exergy efficiency varies greatly from month to month because of the variation of solar radiation and the time for which it is available. The highest energy and exergy efficiencies are obtained for the month of March and their value is 15.6% and 7.9%, respectively. However, the hydrogen production is maximum for the month of August and its value is 9.7 kg because in august, the solar radiation is high and is available for almost 13 h daily. The maximum energetic and exergetic COPs are calculated to be 2.28 and 2.145, respectively and they are obtained in the month of June when solar radiation is high for the specified cooling load of 15 kW. 相似文献