首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Single step solution combustion technique was used to synthesize NiO, Co3O4 and NiCoO2 mixed metal oxide with good crystallinity and uniform properties. XRD spectrum indicates the existence of cubic NiCoO2 phase without any impurities. SEM results indicate the presence of porous structures in all the three cases, a typical characteristic of combustion synthesized samples, which is due to the evolution of gases during the synthesis process. TEM along with the phase mapping shows the presence of well dispersed elements Ni, Co and O throughout the sample. All the three catalysts were evaluated for their bifunctionality towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline medium. NiCoO2 shows the highest number of electron transfer in the overall reaction mechanism with the maximum kinetic current density of 12.3 mA/cm2. The kinetics of NiCoO2 towards ORR and OER was analyzed using Tafel plot and compared with the mono-metal oxides. The catalytic stability was evaluated for 24 h using continuous chronoamperometric (CA) runs, where NiCoO2 shows exceptionally stable performance without any significant decay in current. The highest activity of NiCoO2 could be due to the presence of higher oxidation states of Ni and Co and because of the existence of the oxygen defects acting as active sites for the oxygen adsorption/desorption during the electrocatalytic reactions. Based on the activity and stability trends, NiCoO2 is found to be a promising bifunctional oxygen electrocatalyst for long-term applications.  相似文献   

2.
Oxygen electrodes for oxygen evolution reaction and oxygen reduction reaction were intensively investigated due to high overpotential required to drive the four-electron process. A NiOx@MnOx@G nanostructure supported homogenously on graphene nanosheets through an easy and scalable self-assembly method was studied. The NiOx@MnOx@G exhibited a nanostructured NiOx nanocrystalline with size around 2.3 nm and an amorphous MnOx with controllable thickness. The 25% NiOx@MnOx@G showed remarkable activity for oxygen reduction reaction with a 4-electron process, the half-wave potential was 50 mV, but the stability of 25% NiOx@MnOx@G was better than Pt/C-JM. NiOx@MnOx@G nanostructure exhibited significantly better activity for oxygen evolution reaction compared with MnOx, which can demonstrate that NiOx could tune the activity of surface amorphous MnOx and dramatically increased oxygen evolution reaction activity. NiOx@MnOx@G is demonstrated with superior oxygen catalysts performance for reversible oxygen evolution and oxygen reduction reaction, due to the synergistic effect of NiOx and amorphous MnOx.  相似文献   

3.
    
Oxygen evolution reaction (OER) is an essential process in energy conversion and storage, especially in water electrolysis, while developing active and low-cost catalysts is the key to maximizing O2 production. Here a facile three-electrode electrolysis system is firstly applied to synthesize nickel hydroxide-iron hydroxide/graphene hybrid. To fully utilize the electrical energy and simplify the catalyst synthesis, we made graphite exfoliated into graphene at the cathode and nickel-iron hydroxide synthesized at the anode simultaneously. The best electrocatalytic performance of Ni–Fe/G for OER shows an overpotential of 280 mV (without iR compensation) at 10 mA cm?2, superior to commercial RuO2 (341 mV). Results show that the introduction of Fe in Ni–Fe/G not only converts part of α-Ni(OH)2 into more active β-Ni(OH)2, but promotes the electric conductivity and electrochemically active surface area (ECSA) of the obtained Ni–Fe/G, therefore Ni–Fe/G shows the superior OER performance. The OER activity of Ni–Fe/G can be further adjusted by experiment conditions including electrolysis time and electrolyte concentration. This work provides a novel and facile method for highly efficient OER via engineering the non-noble metal hydroxide/graphene hybrid.  相似文献   

4.
    
Oxygen evolution reaction (OER) is regarded as a limit-efficiency process in electrochemical water splitting generally, which needs to develop the effective and low-cost non-noble metal electrocatalysts. Oxygen vacancies have been verified to be beneficial to enhance the electrocatalytic performance of catalysts. Herein, we report the facile synthesis of reduced CoFe2O4/graphene (r-CFO/rGO) composite with rich oxygen vacancies by a citric acid assisted sol-gel method, heat treatment process and the sodium borohydride (NaBH4) reduction. The introduction of graphene and freezing dry technique prevents the restacking of GO and the aggregation of CFO nanoparticles (NPs) and increases the electronic conductivity of the catalyst. Fast heating rate and low anneal temperature favors to obtain low crystallinity and lattice defects for CFO. NaBH4 reduction treatment further creates the rich oxygen vacancies and electrocatalytic active sites. The obtained r-CFO/rGO with high specific surface area (108 m2 g−1), low crystallinity and rich oxygen vacancies demonstrates a superior electrocatalytic activity with the smaller Tafel slope (68 mV dec−1), lower overpotential (300 mV) at the current density of 10 mA cm−2, and higher durability compared with the commercial RuO2 catalyst. This green, low-cost method can be extended to fabricate similar composites with rich defects for wide applications.  相似文献   

5.
IrO2, IrxSn(1−x)O2 (x = 0.7, 0.5) and IrxRu(1−x)O2 (x = 0.7, 0.5) electrocatalysts for the oxygen evolution reaction (OER) have been synthesized using the Adams fusion method. The metal oxides were characterized via X-ray diffraction, scanning electron microscopy, inductively coupled plasma-atomic emission spectrometry and nitrogen adsorption-desorption measurements to have information about their crystallographic structure, chemical composition and morphology, respectively. A controlled bulk molar fraction of Ru or Sn was introduced in the IrO2 lattice during the synthesis with no phase separation. The electrocatalytic activity of the synthesized oxides in the OER was studied in liquid electrolyte using porous rotating-disk electrodes, in “half-cell” configuration and in a 5 cm2 proton-exchange membrane water electrolysis cell. An increase of the electrical performance was observed upon Ru insertion and a severe depreciation upon Sn insertion.  相似文献   

6.
    
Cost-effective oxygen evolution reaction (OER) electrocatalysts play a key role in electrocatalytic water splitting process. Here, a facile and scalable strategy was applied to synthesize the bimetallic metal-organic frameworks (MOFs) with high OER activity, and the effects of AC magnetic field on OER was also investigated. Results shows that the bimetallic MOFs (Co0.4Ni0.6-MOF-74) exhibited a three-dimensional flower-like morphology, and possessed a higher BET specific area of 905.39 m2 g?1 as well as a smaller median pore size of 0.49 nm as compared to single metal MOFs; It owned a lowest overpotential of 314 mV at 10 mA cm?2 and Tafel slope of 79.39 mV dec?1, both are much lower than these of single metal MOFs, being due to the high specific area and more active sites derived from the distorted crystal structure; When AC magnetic field strength equaled to 5.50 mT, overpotential at 10 mA cm?2 for Co0.4Ni0.6-MOF-74 reached minimum value of 201 mV, reduced by about 36% as compared to that without magnetic field, indicated that AC magnetic field could greatly improve OER process. These improvements resulted from the spin polarization effect, magnetohydrodynamic (MHD) convection and improved active point temperature.  相似文献   

7.
In this paper we present results on the characterization of Ni–Co-oxide electrodes, prepared by anodic deposition from Co(NO3)2 aqueous solutions on Ni substrates. The kinetics and mechanism of oxygen evolution was analysed. Tafel slopes close to 40 mV per decade were measured. The reaction order with respect to [OH] was found to be approximately 2 at 25°C. A possible mechanism for oxygen evolution on these electrodes is presented, which accounts for the values of the kinetic parameters experimentally obtained.  相似文献   

8.
    
Electrocatalytic water splitting is an emerging technology for the development of maintainable hydrogen energy. It remains challenging to manufacture a stable, efficient, and cost-effective electrocatalyst that can conquer the slow reaction kinetics of water electrolysis. Herein, A metal-organic framework (MOF) based material is manufactured and productively catalyze the oxygen evolution reaction (OER). The introduction of elemental nickel enhances the catalytic activity of Co-FcDA. The results show that single Ni was well doped in the CoNi-FcDA catalysts and the doping of Ni has a great influence on the OER activity of CoNi-FcDA catalysts. CoNi-FcDA displayed a low overpotential of 241 mV to arrive at the benchmark current density (10 mA cm?2) with a remarkably small Tafel slope of 78.63 mV dec?1. It surpassed the state-of-the-art electrocatalyst for OER, that is, RuO2 (260 mV and 97.26 mV dec?1) in efficiency as well as instability. Density functional theory (DFT) calculations show that suitable Ni doping at the same time can increase the density of states of the Fermi level, resulting in excellent charge density and low intermediate adsorption energy. These discoveries provide a practical route for designing 2D polymetallic nanosheets to optimize catalytic OER performance.  相似文献   

9.
Herein, the vertical thin nickel–iron layered double hydroxide nanosheets grown on the hills-like nickel framework (NiFe LDH/Ni@NF) are employed for the oxygen evolution reaction (OER), securing at the low overpotentials of 197 and 270 mV to obtain the current densities of 20 and 100 mA cm−2, respectively, with a Tafel slope of 73.34 mV dec−1. The electrodeposited nickel film induces the NiFe LDH nanosheets grow vertically and thinly. As well, the nickel abundant interfaces and inner space makes this catalyst effective for OER. It was further served as the OER electrode in a water splitting system coupled the Pt/C cathode, and a cell voltage was at 1.52 and 1.67 V to achieve the current density of 10 mA cm−2 and 50 mA cm−2. In addition, the water electrolyzer can suffer a long time of 24 h at 50 mA cm−2, showing the feasibility in a practical unbiased alkaline water splitting system.  相似文献   

10.
The efficiency of electrochemical water splitting is greatly hindered by the thermodynamic uphill reaction of oxygen evolution reaction (OER). Thus, it is important to synthesize an active OER electrocatalysts with abundant active sites, favorable conductivity and good durability. Herein, a facile reduction method using NaBH4 as readily available reductant has been developed to fabricate the reduced CoFe2O4 nanosheets (NS). The obtained reduced CoFe2O4 NS are rich in oxygen deficient sites, leading to more active sites as well as the enhanced conductivity than the pristine CoFe2O4 hollow nanosphere, which reaches the current density of 10 mA cm?2 at the overpotential of 320 mV in 1 M KOH. Meanwhile, CoFe2O4 samples with three different morphology nanostructures including hollow nanospheres, bulk and nanoparticles have been provided to study the effect of different morphology on NaBH4 reduction efficiency. As expected, after NaBH4 reduction, CoFe2O4 hollow nanosphere with relatively higher surface area exhibits most obvious improvement for OER activity and also its corresponding reduced CoFe2O4 NS showed best OER performance than the reduced CoFe2O4 bulk as well as the reduced CoFe2O4 nanoparticles, implying the hollow nanospheres feature more accessible surface area than bulk and nanoparticles samples, thus greatly facilitate efficiency of NaBH4 reduction treatment.  相似文献   

11.
Bimetallic Ni–Fe phosphide electrocatalysts were in-situ synthesized through direct phosphorization of metal salts on carbon cloth (CC). The Fe dopant remarkably enhances the OER performance of Ni2P in alkaline medium through the electronic structure modulation of Ni. The (Fe0.5Ni0.5)2P/CC electrode, composed of uniform films coated on carbon fibers, delivers a low overpotential of 260 mV with a small Tafel slope of 45 mV·dec−1 at the current density of 100 mA cm−2, outperforming most reported non-noble electrocatalysts and commercial RuO2 electrocatalyst. The (Fe0.5Ni0.5)2P/CC also displays superior electrochemical stability at high current density. An appropriate Fe dopant level facilitates the in-situ transformation of Ni–Fe phosphides into active NiFeOOH during alkaline OER. This work simplifies the synthesis procedure of metal phosphides.  相似文献   

12.
    
The development of highly active and low-cost catalysts for hydrogen evolution reaction (HER) is significant for the development of clean and renewable energy research. Owing to the low H adsorption free energy, molybdenum disulfide (MoS2) is regarded as a promising candidate for HER, but it shows low activity for oxygen evolution reaction (OER). Herein, graphene-supported cobalt-doped ultrathin molybdenum disulfide (Co–MoS2/rGO) was synthesized via a one-pot hydrothermal method. The obtained hybrids modified electrode exhibits a high HER catalytic activity with a low overpotential of 147 mV at the current density of 10 mA cm−2, a small Tafel slope of 49.5 mV dec−1, as well as good electrochemical stability in acidic electrolyte. Meanwhile, the catalyst shows remarkable OER activity with a low overpotential of 347 mV at 10 mA cm−2. The superior activity is ascribed not only to the high conductivity originated from the reduced graphene, but also to the synergistic effect between MoS2 and cobalt.  相似文献   

13.
Reasonable design and synthesis of hetero atom metal coordination compounds on the atomic scale can significantly improve the performance of the catalysts. Herein, Pt/C (20%) is doped and inserted into the CoSSeNi catalyst through two steps of hydrothermal reaction and high temperature calcination process. Compared with the single metal Pt/C doped CoSSe–Pt/C, the bimetal doped CoSSeNi–Pt/C can greatly enhance the hydrogen evolution reaction (HER) activity. The optimized Pt content in CoSSeNi–Pt/C is 2.25 wt%, which achieves the optimal HER and OER activity. The OER and HER overpotentials of CoSSeNi–Pt/C-0.3 nanosheets at 10 mA cm?2 only required 295 mV and 180 mV, respectively. During the accelerated durability test, in the presence of Pt/C dopants, CoSSeNi–Pt/C catalyst exhibited excellent long-time durability in alkaline media. Meanwhile, CoSSeNi–Pt/C showed much higher DOS near the Fermi level and the higher electron density near the Fermi level would facilitate the adsorption of adsorbates.  相似文献   

14.
    
Efficient and sustainable Janus catalysts toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are highly desirable for future hydrogen production via water electrolysis. Herein we report an active Janus electrocatalyst of amorphous-crystalline cobalt-molybdenum bimetallic phosphide heterostructured nanosheets on nickel foam (CoMoP/CoP/NF) for efficient electrolysis of alkaline water. As-reported CoMoP/CoP/NF consists of amorphous bimetal phosphide nanosheets doped with crystalline CoMoP/CoP heterostructured nanoparticles on NF. It can efficiently catalyze both HER (η = 127 mV@100 mA cm?2) and OER (η = 308 mV@100 mA cm?2) in alkaline electrolyte with long-term durability. Serving as anode and cathode of water electrolyzer, CoMoP/CoP/NF generates electrolytic current of 10, 50 and 100 mA cm?2 at low voltage of 1.50, 1.59, and 1.67 V, respectively.  相似文献   

15.
In the present work, graphene supported IrO2 catalyst (IrO2/RGO) has been synthesized by hydrothermal method in ethanol/water mixture solvent. X-ray diffraction (XRD) and transmission electron microscopy (TEM) tests reveal that IrO2 is uniformly supported on RGO surface with ultrafine IrO2 nanoparticles (ca. 1.7 nm). Linear sweep voltammetry (LSV) tests indicate that the catalytic activity of IrO2/RGO hybrid towards oxygen evolution reaction (OER) is 2.3 times that of commercial IrO2. The superior OER activity of IrO2/RGO hybrid is attributed to the enhanced surface area and the improved electrical conductivity of IrO2 due to the introduction of graphene support. Lifetime tests demonstrate that IrO2/RGO hybrid has unexpectedly high OER durability. It also displays an excellent performance in long-time water electrolysis. This may be interpreted in terms of the dispersion retention of IrO2 nanoparticles on RGO surface, which is caused by the interaction between IrO2 and Π-electrons of RGO.  相似文献   

16.
    
Oxygen evolution reaction (OER) plays a decisive role in electrolytic water splitting. However, it is still challengeable to develop low-cost and efficient OER electrocatalysts. Herein, we present a combination strategy via heteroatom doping, hetero-interface engineering and introducing conductive skeleton to synthesize a hybrid OER catalyst of CNT-interconnected iron-doped NiP2/Ni2P (Fe-(NiP2/Ni2P)@CNT) heterostructural nanoflowers by a simple hydrothermal reaction and subsequent phosphorization process. The optimized Fe-(NiP2/Ni2P)@CNT catalyst delivers an ultralow Tafel slope of 46.1 mV dec?1 and overpotential of 254 mV to obtain 10 mA cm?2, which are even better than those of commercial OER catalyst RuO2. The excellent OER performance is mainly attributed to its unique nanoarchitecture and the synergistic effects: the nanoflowers constructed by a 2D-like nanosheets guarantee large specific area and abundant active sites; the highly conductive CNT skeleton and the electronic modulation by the heterostructural NiP2/Ni2P interface and the hetero-atom doping can improve the catalytic activity; porous nanostructure benefits electrolyte penetration and gas release; most importantly, the rough surface and rich defects caused by phosphorization process can further enhance the OER performance. This work provides a deep insight to boost catalytic performance by heteroatom doping and interface engineering for water splitting.  相似文献   

17.
    
It is of momentously realistic significance to exploit highly efficacious and cost-effective non-noble metal electrocatalysts for oxygen evolution reaction (OER), considering its promising renewable energy application. Herein, a self-supporting electrocatalyst composed of nickel-iron phosphide nanosheets on carbon cloth (NiFeP@CC) is proposed for OER, which are derived from the phosphating treatment of two-dimensional NiFe-MOF nanosheets. The NiFeP@CC composite possesses the synergistic effect of bimetallic NiFe phosphides in promoting the OER, the fully exposed active sites of the nano-sheet structure and the fast charge/mass transfer from the hierarchical porous structure. Owing to the above structural features, the optimized NiFeP@CC presents an impressive OER performance in alkaline solution. The overpotential and Tafel slope are as low as 229 mV and 36.4 mV dec?1 under a current density of 10 mA cm?2, respectively, much superior to those for the commercial IrO2 catalyst. More excitingly, this self-supporting electrocatalyst also possesses an exceptionally high durability, showing no activity degradation for 25 h. This work offers a simple and feasible strategy for developing practically available OER catalysts with a high activity and stability.  相似文献   

18.
Nickel selenides with different Ni/Se atomic ratio have been successfully synthesized by a simple solvothermal method. Among them, the nonstoichiometric compound (Ni0.85Se) (A-10) behaved excellent electrochemical catalytic activity towards hydrogen evolution reaction. Furthermore, it presents an ultra-low overpotential (η) of 190 mV and extremely small Tafel slope of 57 mV/dec when the current density jA reaches ~10 mA/cm2. At the same time, it has large effective electrochemical active surface area and shows outstanding stability after a long time chronoamperometry testing.  相似文献   

19.
    
Nickel-based materials exhibit great potential in the field of hydrogen evolution reaction (HER), however, the low catalytic active site and poor corrosion resistance still limit further application. Herein, a novel 3D self-supporting electrode of graphene oxide/nickel-cobalt/carbonized wood (GO/Ni–Co/CW) based on porous carbon is developed. The self-supporting structure of the electrode effectively prevents the shedding of catalytic materials, while the exposed active sites of the Ni–Co nanosheets ensure excellent catalysis and the decoration of GO further enhances the HER performance. Evidently, GO/Ni–Co/CW requires an overpotential of 52 mV in 0.5 M H2SO4 and 70 mV in 1 M KOH to achieve a current density of 10 mA cm−2. Furthermore, the introduction of GO greatly improves the stability performance of the electrode due to its corrosion resistance, as found by the catalytic stability performance test. As a new idea, GO decorated Ni–Co nanosheets grown on wood-based porous carbon as electrodes fully combine and exploit the advantages of CW's 3D porous structure, Ni–Co nanosheets' catalytic activity, and GO's corrosion resistance, which provide an effective strategy for novel nickel-based HER electrocatalysts.  相似文献   

20.
    
Activating the inert basal planes of layered molybdenum disulfide (MoS2) is critical to deliver its high hydrogen evolution reaction (HER) efficiency. Herein, oxygen-incorparated MoSx with abundant undercoordinated Mo atoms is fabricated by a facile solvothermal procedure, which realizes synergistically structural and electronic regulations of MoS2 inert basal planes. Experiment results reveal that oxygen incoparation can effectively modulate the electronic structure and further optimize the intrinsic conductivity, while the defect-rich structure with abundant undercoordinated Mo atoms increases the number of active sites. Moreover, the influence of solvothermal temperature on activity of MoS2-x is also investigated. The achieved MoSx electrocatalyst prepared at 220 °C exhibits a superior activity for HER with a low overpotential of 191 mV at 10 mA cm−2, a small Tafel slope of 67 mV dec−1, and an excellent stability due to the largest surface area and superior conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号