首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this work is an experimental study of the influence of initial and boundary conditions at the nozzle exit upon diffusion combustion of a hydrogen microjet. It is found that the initial mean velocity profile and the presence (or absence) of a material with large heat capacity surrounding the nozzle exit may have a pronounced effect on the flame structure and combustion of the round hydrogen microjet. The rates of fuel consumption (i.e., the efflux velocities of hydrogen) providing diffusion combustion of the round hydrogen microjet, the flame detachment, and the origination of the «bottleneck flame» in the cases of a top-hat and a parabolic mean velocity profiles at the nozzle exit are determined. The variations of the extent of «bottleneck flame» with the hydrogen flow rate are made clear. Also we examine the diminution of the extent of «bottleneck flame» with the growth of hydrogen flow rate in three cases of initial conditions at the nozzle exit.  相似文献   

2.
In this paper, supersonic combustion and flow field of hydrogen and its mixture with ethylene and methane from strut injections in a Mach 2 supersonic flow are studied numerically. The fuel mixture of hydrogen, methane and ethylene represents the major products of pyrolysis of hydrocarbon fuels with large molecules such as kerosene as it acts as coolant and flows through cooling channels and absorbs heat. Detached Eddy Simulation with a reduced kinetic mechanism and steady flamelet model are applied to simulate turbulent combustion. The calculated temperature profiles of hydrogen are compared to the experimental results of DLR supersonic combustor for validation of the present numerical method. The supersonic combustion flows associated with shock waves, turbulent vortices and flame structures are studied. With addition of methane and ethylene, the flame zone moves further downstream of the strut and the maximum flow temperature at chamber exit decreases by 200 K. With analysis of total temperature ratios, it is found that combustion efficiency for hydrogen combustion is 0.91 and it decreases to 0.78 for the fuel mixture. The calculation of ignition delay time and flame speed reveals that fuel mixture of hydrogen and hydrocarbons has considerably larger delay time and smaller flame speed, that contributes to the weakened flame zone and lower combustion efficiency.  相似文献   

3.
A model scramjet engine in which the 1.0 Ma hydrogen jet mixes and reacts with the 2.0 Ma surrounding airstream is investigated using large eddy simulation. The flame structure is analyzed with a focus on the relationship between premixed/diffusion combustion mode and heat release in the supersonic reacting flow. The flame filter is used to evaluate the contributions to heat release rate by different combustion modes qualitatively and quantitatively. Results show that the heat is released from a combination of premixed combustion mode and diffusion combustion mode even when the fuel and airstream are injected into the combustor separately. Local mode-transition occurs as the supersonic jet flame propagates and interacts with shocks. The diffusion combustion mode dominates during the ignition stage and the premixed combustion becomes dominant during the intensive combustion region. When the shock wave impinges on the flame, the combustion area decreases a little due to the compression effects of the shock. However, the heat release rate is significantly improved in the interaction region since the shock could increase the air entrainment rate by directing the airflow toward the fuel jet and enhance the mixing rate by inducing vorticity due to baroclinic effects, which is good for flame stabilization in the supersonic flow. For the present case, 33.3% of the heat is released by diffusion combustion and 66.7% of the heat is released by premixed combustion. Thus the premixed combustion mode is dominant in terms of its contributions to heat release in the model scramjet engine.  相似文献   

4.
In the present work release and ignition experiments with horizontal cryogenic hydrogen jets at temperatures of 35–65 K and pressures from 0.7 to 3.5 MPa were performed in the ICESAFE facility at KIT. This facility is specially designed for experiments under steady-state sonic release conditions with constant temperature and pressure in the hydrogen reservoir. In distribution experiments the temperature, velocity, turbulence and concentration distribution of hydrogen with different circular nozzle diameters and reservoir conditions was investigated for releases into stagnant ambient air. Subsequent combustion experiments of hydrogen jets included investigations on the stability of the flame and its propagation behaviour as function of the ignition position. Furthermore combustion pressures and heat radiation from the sonic jet flame during the combustion process were measured. Safety distances were evaluated and an extrapolation model to other jet conditions was proposed. The results of this work provide novel data on cryogenic sonic hydrogen jets and give information on the hazard potential arising from leaks in liquid hydrogen reservoirs.  相似文献   

5.
Experiments were performed to investigate the combustion process which occurs when hydrogen is injected into a high temperature oxidizer. Hydrogen was injected through a circular nozzle into an oxygen-argon mixture in a temperature range 950–1500 K produced behind a reflected shock wave. The effects of oxidizer temperature, oxygen concentration and size of nozzle diameter on the ignition delay were studied. Also, the flow field was observed with a conventional schlieren system and a high speed camera. Consequently it has been found that the ignition delay is influenced mainly by the oxidizer temperature, that the minimum ignition temperature is around 980 K irrespective of the oxygen concentration and the size of the nozzle diameter, that the ignition takes place at a position near the nozzle exit and that the resulting flame propagates toward the tip of the jet. This is followed by a discussion of the ignition process and the applicability of hydrogen to diesel engines based on the present experiment results.  相似文献   

6.
The pre-chamber spark ignition system is a promising advanced ignition system adopted for lean burn spark ignition engines as it enables stable combustion and enhances engine efficiency. The performance of the PCSI system is governed by the turbulent flame jet ejected from the pre-chamber, which is influenced by the pre-chamber geometrical parameters and the operating conditions. Hence, the current study aims to understand the effects of pre-chamber volume, nozzle hole diameter, equivalence ratio, and initial chamber pressure on the combustion and flame jet characteristics of hydrogen-air mixture in a passive PCSI system. Pre-chamber with different nozzle hole diameters (1 mm, 2 mm, 3 mm, and 4 mm) and volumes (2%, 4%, and 6% of the engine clearance volume) were selected and manufactured in-house. The experimental investigation of these pre-chamber configurations was carried out in a constant-volume combustion chamber with optical access. The flame development process was captured using a high-speed camera at a rate of 20000 fps, and the images were processed in MATLAB to obtain quantitative data. The combustion characteristics of hydrogen-air mixtures with the PCSI system improved when compared to the conventional SI system; however, the improvement was more significant for ultra-lean mixtures. Early start of combustion and shorter combustion duration were observed for PCSI – D2 and PCSI – D3 configurations, respectively and improved combustion and flame jet characteristics were also noted for these configurations. With the increase in pre-chamber volume, ignition energy associated with the flame jet increases, which reduces the combustion duration and the ignition lag.  相似文献   

7.
The leaks of pressurized hydrogen can be ignited if an ignition source is within a certain distance from the source of the leaks, and jet fires or explosions may take place. In this paper, a high speed camera was used to investigate the ignition kernel development, ignition probability and flame propagation along the axis of hydrogen jets, which leaked from a 3-mm-internal-diameter nozzle and were ignited by an electric spark. Experimental results indicate that for successful ignition events, the ignition delay time increases with an increase of the distance between the nozzle and the electrode. Ignitable zone of the hydrogen jets is underestimated if using the predicted hydrogen concentration along the jets centerline. The average rate of downstream flame decreases but that of the upstream flame increases with the electrode going far from the nozzle.  相似文献   

8.
Fuel mixing inside the supersonic combustion chamber is a significant process for development of modern scramjets. In this article, computational fluid dynamic (CFD) approach is applied to investigate the effect of various fuel injections on the mixing rate inside the supersonic combustion chamber. The mixing of hydrogen jets with four different arrangements inside the cavity flame holder is comprehensively studied. In order to examine the effect of multi jets within a cavity flameholder, a three-dimensional model is established and Navier-stocks equations are solved to simulate the flow and mixing zone inside a cavity region. Obtained results show that the injection of hydrogen jet from the bottom of cavity flame holder considerable enhances the ignition zone within the cavity. Moreover, the backward fuel injection is more superior to forward fuel injection since low-pressure vortex could significantly distribute the fuel and enlarge the mixing zone inside the cavity flame holder.  相似文献   

9.
The process involved in chemical energy release by combustion in a supersonic, constant pressure, hydrogen-air laminar mixing layer was studied computationally, with a chemical kinetics model involving nineteen reactions and eight species. To try to find out the physical reason for the different trends of the pressure curves observed in an experimental supersonic combustor at two different initial air stream temperatures. Two initial air stream temperatures corresponding to the two experimental cases are chosen such that the higher temperature yielded a shorter ignition distance, and the lower temperature yielded a longer ignition distance. For both cases the stream wise rate of energy release rises rapidly to a peak after ignition then falls to a post-ignition value which decreases very slowly with distance. A single premixed flame occurs at ignition for both cases, but then develops into a triple flame structure in the high temperature case, and a flame with only two branches in the low temperature case. The flames move from the airside to hydrogen side consuming the oxygen as they go, until the post-ignition phase is reached. There the dominant energy release arises from the formation of a diffusion flame. In the high temperature case a narrow lean premixed flame accompanies this diffusion flame on the airside. The flame structure, but not the energy release, is effected by the initial temperature distribution across the mixing layer, which is found to be influenced by the velocity difference between the faster air stream and the slower hydrogen stream. Increasing the concentration of oxygen atoms in the oncoming air stream was found to cause substantial reduction in the ignition distance, but did not significantly effect the flame structure, or the rate of heat release in the post-ignition phase. Finally, the different trends of pressure curves observed in the experiment can be reconstructed when pressure variation was considered in this model. Thus we can conclude that the difference in the trends of the pressure curves is caused by the difference in the initial air stream temperature.  相似文献   

10.
The work is devoted to the study of the intensity of heat transfer in a supersonic combustion chamber at a Mach number of 4 under conditions of ignition and transition to intense combustion, including the transition to choking the channel. The experiments were carried out on a combustion chamber model in the connected pipeline mode with flow parameters in the channel close to flight conditions at Mach numbers 6–8. The experimental model is a rectangular channel with a flame holder in the form of backward facing step (BFS). Fuel injection was carried out in front of BFS on the top and bottom walls of the model through 8 circular holes, which were situated under the angles of 45° or 90°. It has been revealed that the choice of the fuel injection scheme leads to an increase in the level and a change in the distribution of the heat flux along the length of the combustion chamber. A decrease in the angle of hydrogen injection makes it possible to significantly reduce the heat flux into the wall of the combustion chamber, while choking the channel is accompanied by a twofold increase in the heat flux.  相似文献   

11.
Experiments of two nozzle diameters at three ignition positions under three initial pressure conditions were carried out. The dynamic leakage characteristics and the stagnation parameters of flame propagation under normal temperature and high pressure conditions were studied. Based on van der Waal's equation, a model for predicting stagnation parameters, jet velocity and flow rate of hydrogen leakage was proposed. Compared with the experimental results, it was found that the maximum error occurred when the initial pressure was 200 bar. Theoretical leakage time was 1.66 s, experiment leakage time was 1.84 s, the error was 9.8%. Background-Oriented Schlieren image technology was used to record the flame development and propagation process after ignition. For the same nozzle diameter and ignition location, the higher pressure caused the flame to propagate faster upstream and downstream. For the same initial pressure and ignition position, a flame with a large nozzle diameter propagated faster upstream and downstream. For the same initial pressure and nozzle diameter, the farther the ignition point was, the greater the slope of flame attenuation when propagating upstream. Due to the attenuation of hydrogen concentration and jet velocity, the flame propagation velocity to the downstream decreased linearly with the increase of distance from the ignition location.  相似文献   

12.
A high-pressure hydrogen jet released into the air has the possibility of igniting in a tube without any ignition source. The mechanism of this phenomenon, called spontaneous ignition, is considered to be that hydrogen diffuses into the hot air caused by the shock wave from diaphragm rupture and the hydrogen-oxidizer mixed region is formed enough to start chemical reaction. Recently, flow visualization studies on the spontaneous ignition process have been conducted to understand its detailed mechanism, but such ignition has not yet been well clarified. In this study, the spontaneous ignition phenomenon was observed in a rectangular tube. The results confirm the presence of a flame at the wall of the tube when the shock wave pressure reaches 1.2–1.5 MPa in more than 9 MPa burst pressure and that ignition occurs near the wall, followed by multiple ignitions as the shock wave propagates, with the ignitions eventually combining to form a flame.  相似文献   

13.
Butanol could reduce emissions and alleviate the energy crisis as a bio-fuel used on engines, but the production cost problem limits the application of butanol. During the butanol production, ABE (Acetone-Butanol-Ethanol) is a critical intermediate product. Many studies researched the direct application of ABE on engines instead of butanol to solve the production cost problem of butanol. ABE has the defects of large ignition energy and vaporization heat. Hydrogen is a gaseous fuel with small ignition energy and high flame temperature. In this research, ABE port injection combines with hydrogen direct injection, forming a stratified state of the hydrogen-rich mixture around the spark plug. The engine speed is 1500 rpm, and λ is 1. Five αH2 (hydrogen blending fractions: 0, 5%, 10%, 15%, 20%) and five spark timings (5°, 10°, 15°, 20°, 25° CA BTDC) are studied to observe the effects of them on combustion and emissions of the test engine. The results show that hydrogen addition increases the maximum cylinder pressure and maximum heat release rate, increases the maximum cylinder temperature and IMEP, but the exhaust temperature decreases. The flame development period and flame propagation period shorten after adding hydrogen. Hydrogen addition improves HC and CO emissions but increases NOx emissions. Particle emissions decrease distinctly after hydrogen addition. Hydrogen changes the combustion properties of ABE and improves the test engine's power and emissions. The combustion in the cylinder becomes better with the increase of αH2, but a further increase in αH2 beyond 5% brings minor improvements on combustion.  相似文献   

14.
An experimental study deals with a high‐speed hydrogen jet diffusion flame ejected vertically upward from a straight circular nozzle. Consideration is given to the reignition phenomenon that occurs after blow‐off of the main flame. The Schlieren technique and image‐processing method with the aid of the high‐speed video camera are employed to visualize the flame shape, particularly the flame base near the nozzle tip and to investigate the time history of the flame morphology. It is found that: (i) the flame reignition phenomenon of hydrogen jet diffusion flames appears only in a certain region of mass flow rates; (ii) the small‐sized flame‐let remains in the vicinity of the nozzle rim at the mass flow rates that the reignition occurs; (iii) a further increase in mass flow rates makes the flame‐let extinguish and no reignition occurs; (iv) the time interval of flame reignition extends with an increase in mass flow rates; and (v) the flow rates of the onset and end of the reignition and the existence of flame‐let formed near the nozzle rim are affected by the rim thickness of the fuel nozzle. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
二甲基醚(DME)碰壁喷雾特性和燃烧特性试验研究   总被引:1,自引:0,他引:1  
用阴影法和火焰直接成像法对二甲基醚(DME)碰壁喷雾特性和燃烧特性进行了试验研究。研究结果表明,二甲基醚碰壁后沿壁面发展特性与柴油极为相似,即沿壁面径向扩散,形成油雾的爬壁现象,二甲基醚沿壁面发展速度比柴油慢,但碰壁后的反弹量比柴油多;加热条件下二甲基醚碰壁试验研究表明,热碰壁沿壁面的发展速度比冷碰壁快,反弹量比冷碰壁多。在平板上方有一个明显的浓度梯度变化区域,碰壁后期在平板与燃烧室壁面存在一个二甲基醚浓度高的三角区域。二甲基醚碰壁对燃烧滞燃期影响不大,但着火位置造近壁面,大部分的二甲基醚都是着壁之后燃烧,并且燃烧火焰在高浓度的三角区域持续较长时间,因而碰壁燃烧持续期略有延长,与柴油相比,二甲基醚燃烧火焰几乎经过整个壁面上部燃烧室的区域,火焰经过的面积大。  相似文献   

16.
Effect of hydrogen addition on early flame growth of lean burn natural gas–air mixtures was investigated experimentally and numerically. The flame propagating photos of premixed combustion and direct-injection combustion was obtained by using a constant volume vessel and schlieren photographic technique. The pressure derived initial combustion durations were also obtained at different hydrogen fractions (from 0% to 40% in volumetric fraction) at overall equivalence ratio of 0.6 and 0.8, respectively. The laminar premixed methane–hydrogen–air flames were calculated with PREMIX code of CHEMKIN II program with GRI 3.0 mechanism. The results showed that the initial combustion process of lean burn natural gas–air mixtures was enhanced as hydrogen is added to natural gas in the case of both premixed combustion and direct-injection combustion. This phenomenon is more obvious at leaner mixture condition near the lean limit of natural gas. The mole fractions of OH and O are increased with the increase of hydrogen fraction and the position of maximum OH and O mole fractions move closing to the unburned mixture side. A monotonic correlation between initial combustion duration with the reciprocal maximum OH mole fraction in the flames is observed. The enhancement of the spark ignition of natural gas with hydrogen addition can be ascribed to the increase of OH and O mole fractions in the flames.  相似文献   

17.
Hydrogen gas concentrations and jet velocities were measured downstream by a high response speed flame ionization detector and PIV (Particle Image Velocimetry) in order to investigate the characteristics of dispersion and ignitability for 40–82 MPa high-pressurized hydrogen jet discharged from a nozzle with 0.2 mm diameter. The light emitted from both OH radical and water vapor species yielded from hydrogen combustion, ignited by an electric spark, were recorded by two high speed cameras. From the results, the empirical formula concerning the relationships for time-averaged concentrations, concentration fluctuations and ignition probability were obtained to suggest that they would be independent of hydrogen discharge pressure.  相似文献   

18.
Large eddy simulation (LES) has been performed to investigate transverse hydrogen jet mixing and combustion process in a scramjet combustor model with a compression ramp at inlet to generate shock train. Partially Stirred Reactor (PaSR) sub-grid combustion model with a skeleton of 19 reactions and 9 species hydrogen/air reaction mechanism was used. The numerical solver is implemented in an Open Source Field Operation and Manipulation (OpenFOAM) and validated against experimental data in terms of mean wall pressure. Effects of a shock train induced by the inlet compression ramp on the flame stabilization process are then studied. It can be observed that the interaction of the oblique shock and the jet mixing layer enhance the combustion and stabilize the flame. Symmetrical recirculation zone, which contributes to the flame anchoring of the supersonic transverse jet combustion, is observed in the near wall region of 10 < x/D < 20. The hydrogen fuel is transported from the center of jet plume to the near wall region on both sides of the central plane (z/D = 0) and thus intense combustion near the wall is observed due to the enhanced mixing and shock compression heating. Besides, the jet penetration in the reacting field is different from that in non-reacting case with the influence of the interaction between the reflected oblique shock and the jet shear layer on the windward side.  相似文献   

19.
When hydrogen flows through a small finite length constant exit area nozzle the viscous effects create a fluid throat which acts as a converging-diverging nozzle and lead to Mach number greater than one at the exit if the jet is under-expanded. This phenomenon influences the mass flow rate and the dispersion cloud size. In this study, the boundary layer effect on the unsteady hydrogen sonic jet flow through a 1 mm diameter pipe from a high pressure reservoir (up to 70 MPa) is studied using computational fluid dynamics with a large eddy simulation turbulence model. This viscous flow simulation is compared with a non-viscous simulation to demonstrate that the velocity is supersonic at the exit of a small exit nozzle and that the mass flow is reduced.  相似文献   

20.
Considering the trend toward decarbonization, hydrogen is expected to be used as a fuel in industrial furnace burners. One of the challenges in using hydrogen as a fuel is the increase in thermal-NOx emission compared to hydrocarbon fuel owing to its high flame temperature. This study experimentally evaluated the combustion characteristics of flameless combustion, which is a low-NOx combustion technology, with hydrogen as a fuel in a practical-scale experimental furnace as well as the effect of nozzle design parameters on the combustion characteristics. Through comparative tests with city gas by considering parameters, such as the fuel gas velocity, combustion air velocity, and air nozzle pitch, the low-NOx effect of flameless combustion was confirmed in hydrogen combustion with appropriate nozzle design parameters. The optimal nozzle design parameters to achieve this effect differ from those for city gas, and the design guidelines are summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号