首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
This paper focuses on optimizing the hydrogen TMI (timed manifold injection) system through valve lift law and hydrogen injection parameters (pressure, injection inclination and timing) in order to prevent backfire phenomena and improve the volumetric efficiency and mixture formation quality of a dual fuel diesel engine operating at high load and high hydrogen energy share. This was achieved through a numerical simulation using CFD code ANSYS Fluent, developed for a single cylinder hydrogen-diesel dual fuel engine, at constant engine speed of 1500 rpm, 90% of load and 42.5% hydrogen energy share. The developed tool was validated using experimental data. As a results, the operating conditions of maximum valve lift = 10.60 mm and inlet valve closing = 30 °CA ABDC (MVL10 IVC30) prevent the engine from backfire and pre-ignition, and ensure a high volumetric efficiency. Moreover, a hydrogen start of injection of 60 °CA ATDC (HSOI60) is appropriate to provide a pre-cooling effect and thus, reduce the pre-ignition sources and helps to quench any hot residual combustion products. While, the hydrogen injection pressure of 2.7 bar and an inclination of 60°, stimulate a better quality of hydrogen-air mixture. Afterwards, a comparison between combustion characteristics of the optimized hydrogen-diesel dual fuel mode and the baseline (diesel mode) was conducted. The result was, under dual fuel mode there is an increase in combustion characteristics and NOx emissions as well as a decrease in CO2 emissions. For further improvement of dual fuel mode, retarding diesel start of injection (DSOI) strategy was used.  相似文献   

2.
Hydrogen internal combustion engine (H2ICE) easily occur inlet manifold backfire and other abnormal combustion phenomena because of the low ignition energy, wide flammability range and rapid combustion speed of hydrogen. In this paper, the effect of injection timing on mixture formation in a manifold injection H2ICE was studied in various engine speed and equivalence ratio by CFD simulation. It was concluded that H2ICE of manifold injection have an limited injection end timing in order to prevent backfire in the inlet manifold. Finally, the limit of injection end timing of the H2ICE was proposed and validated by engine experiment.  相似文献   

3.
利用CONVERGE软件基于L23/30DF型船用天然气发动机建立了双天然气喷嘴、双引燃柴油喷嘴的直喷天然气发动机的缸内燃烧过程的CFD计算模型,计算了不同的柴油和天然气喷射时刻和间隔下发动机缸内燃烧和排放过程.结果 表明:引燃柴油的喷射时刻及其与天然气喷射时刻的间隔,对直喷式天然气发动机燃烧和排放性能有重要影响.当喷...  相似文献   

4.
Up to 90% hydrogen energy fraction was achieved in a hydrogen diesel dual-fuel direct injection (H2DDI) light-duty single-cylinder compression ignition engine. An automotive-size inline single-cylinder diesel engine was modified to install an additional hydrogen direct injector. The engine was operated at a constant speed of 2000 revolutions per minute and fixed combustion phasing of ?10 crank angle degrees before top dead centre (°CA bTDC) while evaluating the power output, efficiency, combustion and engine-out emissions. A parametric study was conducted at an intermediate load with 20–90% hydrogen energy fraction and 180-0 °CA bTDC injection timing. High indicated mean effective pressure (IMEP) of up to 943 kPa and 57.2% indicated efficiency was achieved at 90% hydrogen energy fraction, at the expense of NOx emissions. The hydrogen injection timing directly controls the mixture condition and combustion mode. Early hydrogen injection timings exhibited premixed combustion behaviour while late injection timings produced mixing-controlled combustion, with an intermediate point reached at 40 °CA bTDC hydrogen injection timing. At 90% hydrogen energy fraction, the earlier injection timing leads to higher IMEP/efficiency but the NOx increase is inevitable due to enhanced premixed combustion. To keep the NOx increase minimal and achieve the same combustion phasing of a diesel baseline, the 40 °CA bTDC hydrogen injection timing shows the best performance at which 85.9% CO2 reduction and 13.3% IMEP/efficiency increase are achieved.  相似文献   

5.
In this paper, a new kind of injection mode, split hydrogen direct injection, was presented for a dual fuel SI engine. Six different first injection proportions (IP1) and five different second injection timings were applied at the condition of excess air ratio of 1, first injection timing of 300°CA BTDC, low speed, low load conditions and the Minimum spark advance for Best Torque (MBT) on a dual fuel SI engine with hydrogen direct injection (HDI) plus port fuel injection (PFI). The result showed that, split hydrogen direct injection can achieve a higher brake thermal efficiency and lower emissions compared with single HDI. In comparison with single HDI, the split hydrogen direct injection can form a controlled stratified condition of hydrogen which could make the combustion more complete and faster. By adding an early spray to form a more homogeneous mixture, the split hydrogen direct injection not only can help to form a flame kernel to make the combustion stable, but also can speed up the combustion rate through the whole combustion process, which can improve the brake thermal efficiency. By split hydrogen direct injection, the torque reaches the highest when the first injection proportion is 33%, which improves by 1.13% on average than that of single HDI. With the delay of second injection timing, the torque increases first and then decreases. With the increase of first injection proportion, the best second injection timing is advanced. Furthermore, by forming a more homogeneous mixture, the split hydrogen direct injection can reduce the quenching distance to reduce the HC emission and reduce the maximum temperature to reduce the NOX. The split hydrogen direct injection can reduce the HC emission by 35.8%, the NOX emissions by 7.3% than that of single HDI.  相似文献   

6.
In this study, a three-dimensional numerical model of a hydrogen direct-injection engine was established, and the combustion model was verified by experimental data. The influence of the injection timing and nozzle diameter on ultra-lean combustion was evaluated. The results suggest that, with the delay in the injection timing, the mixture concentration near the spark plug and combustion speed gradually increase. The maximum thermal efficiency increased from 47.44% to 49.87%. The combustion duration and ignition lag are shortened from 19.15°CA to 11.15°CA to 16.13°CA and 5.92°CA, respectively. As the nozzle diameter increased, the injection duration was shortened, and the mixture distribution area became more concentrated. Furthermore, under ultra-lean combustion, the combustion rate is more sensitive to the distribution of the mixture. Appropriately increasing the equivalence ratio near the spark plug can significantly shorten the ignition lag and combustion duration and obtain a higher thermal efficiency.  相似文献   

7.
The n-butanol fuel, as a renewable and clean biofuel, could ease the energy crisis and decrease the harmful emissions. As another clean and renewable energy, hydrogen properly offset the high HC emissions and the insufficient of dynamic property of pure n-butanol fuel in SI engines, because of the high diffusion coefficient, high adiabatic flame velocity and low heat value. Hydrogen direct injection not only avoids backfire and lower intake efficiency but also promotes to form in-cylinder stratified mixture, which is helpful to enhance combustion and reduce emissions. This experimental study focused on the combustion and emissions characteristics of a hydrogen direct injection stratified n-butanol engine. Three different hydrogen addition fractions (0%, 2.5%, 5%) were used under five different spark timing (10° ,15° ,20° ,25° ,30° CA BTDC). Engine speed and excess air ratio stabled at 1500 rpm and 1.2 respectively. The direct injection timing of the hydrogen was optimized to form a beter stratified mixture. The obtained results demonstrated that brake power and brake thermal efficiency are increased by addition hydrogen directly injected. The BSFC is decreased with the addition of hydrogen. The peak cylinder pressure and the instantaneous heat release rate raises with the increase of the hydrogen addition fraction. In addition, the HC and CO emissions drop while the NOx emissions sharply rise with the addition of hydrogen. As a whole, with hydrogen direct injection, the power and fuel economy performance of n-butanol engine are markedly improved, harmful emissions are partly decreased.  相似文献   

8.
An experimental investigation was performed to characterize the hydrogen combustion in a spark-ignition direct-injection engine. It was focused on the effects of mixture strength and injection timing on the characteristics of hydrogen combustion. For this purpose, the practical tests were carried out on an experimental test rig. It is originally designed for optimization of the direct-injection natural-gas engine. The experimental test-rig results comprised the traces for the in-cylinder pressure, mass fraction burned, and heat release rate under the different operation conditions. The results obtained show that the richer mixture condition produced higher pressure trends at all tested points. Besides that, it exhibited a faster rate of increase in combustion rate due to the increase of flame speed. However, the combustion characteristics deteriorated due to the lack of mixture stratification with earlier injection timing. It is concluded that direct-injection timing is essential to achieve better combustion performance. Moreover, retarding the spark ignition timing is also crucial to avoid abnormal combustion in the case of a richer mixture and early start on injection.  相似文献   

9.
The hydrogen rotary engine (HRE) has advantages of the high power-to-weight ratio and low emission performance. In this study, a three-dimensional dynamic simulation model of the hydrogen direct injection rotary engine is established, and the accuracy and reliability of the gas nozzle injection model are verified based on experimental data in detail. Then, the combined effects of the air intake method (AIM) and hydrogen injection timing (HIT) on airflow movement and mixture formation processes in the HRE are investigated. The numerical results show that the compound AIM improves the engine volumetric efficiency due to more air entering. As for air movement, the average airflow velocity and turbulent kinetic energy both increase significantly during hydrogen injection duration under different HITs and AIMs. In terms of mixture formation, using compound AIM, more hydrogen accumulates near the ignition chamber compared to the peripheral and side AIMs. Also, when HITs are ?286°CA and ?190°CA, hydrogen concentrates near the ignition chamber, which will be conducive to the subsequent combustion process due to the RE's flame forward propagation characteristics. Comprehensively considering the airflow movement characteristics and fuel distribution rule, the peripheral AIM and the compound AIM, which their HITs are set at the compression stage (?190°CA), namely Case7 and Case9, are preferred schemes. This paper can provide some theoretical guidance for the intake structure design, injection strategy optimization and mixture rational organization of the HRE.  相似文献   

10.
A numerical study on effects of hydrogen direct injection on hydrogen mixture distribution, combustion and emissions was presented for a gasoline/hydrogen SI engine. Under lean burn conditions, five different direct hydrogen injection timings were applied at low speeds and low loads on SI engines with direct hydrogen injection (HDI) and gasoline port injection. The results were showed as following: firstly, with the increase of hydrogen direct injection timing, the hydrogen concentration near the sparking plug first increases and then decreases, reaching the highest when hydrogen direct injection timing is 120°CA BTDC: Secondly, hydrogen can speed up the combustion rate. The main factor affecting the combustion rate and efficiency is the hydrogen concentration near the sparking plug: Thirdly, in comparing with gasoline, the NOX emissions with hydrogen addition increase by an average of 115%. For different hydrogen direct injection timings, the NOX emissions of 120°CA BTDC is the highest, which is 29.9% higher than the 75°CA BTDC. The hydrogen addition make the NOX emissions increase in two ways. On the one hand, the average temperature with hydrogen addition is higher. On the other hand, the temperature with hydrogen addition is not homogeneous, which makes the peak of temperature much higher. In a word, the main factor of NOX emissions is the size of high temperature zone in the cylinder: Finally, because the combustion is more complete, in comparing with gasoline, hydrogen addition can reduce the CO and HC emissions by 32.2% and 80.4% respectively. Since a more homogeneous hydrogen mixture distribution can influence a lager zone in the cylinder and reduce the wall quenching distance, these emissions decrease with the increase of hydrogen direct injection timing. The CO and HC emissions of 135°CA BTDC decrease by 41.5% and 71.4%, respectively, compared to 75°CA BTDC.  相似文献   

11.
The present study highlights the influence of fuel injection pressure (FIP) and fuel injection timing (FIT) of Jatropha biodiesel as pilot fuel on the performance, combustion and emission of a hydrogen dual fuel engine. The hydrogen flow rates used in this study are 5lit/min, 7lit/min, and 9lit/min. The pilot fuel is injected at three FIPs (500, 1000, and 1500 bar) and at three FITs (5°, 11°, and 17?bTDC). The results showed an increase in brake thermal efficiency (Bth)from 25.02% for base diesel operation to 32.15% for hydrogen-biodiesel dual fuel operation with 9lit/min flow rate at a FIP of 1500 bar and a FITof17?bTDC. The cylinder pressure and heat release rate (HRR) are also found to be higher for higher FIPs. Advancement in FIT is found to promote superior HRR for hydrogen dual fuel operations. The unburned hydrocarbon (UHC) and soot emissions are found to reduce by 59.52% and 46.15%, respectively, for hydrogen dual fuel operation with 9lit/min flow rate at a FIP of 1500 bar and a FIT of 11?bTDC. However, it is also observed that the oxides of nitrogen (NOX) emissions are increased by 20.61% with 9lit/min hydrogen flow rate at a FIP of 1500 bar and a FIT of 17?bTDC. Thus, this study has shown the potential of higher FIP and FIT in improving the performance, combustion and emission of a hydrogen dual fuel engine with Jatropha biodiesel as pilot fuel.  相似文献   

12.
Hydrogen direct injection (HDI) in cylinder is considered as an effective method to improve natural gas engine performance. The present study aims to bridge the gap on the HDI in rotary engine, and to investigate the effect of hydrogen injection timing (IT) and hydrogen injection duration (ID) on mixture formation and combustion process of a hydrogen direct injection plus natural gas port injection (HDI + NGPI) rotary engine. Numerical approach was used in this study for obtaining some critical information, which was difficult to obtain through experiment, such as flow field, fuel distribution and some intermediate concentration fields in cylinder. The research results showed that for mixture formation, the distribution law of the hydrogen and the natural gas at the late stages of the compression stroke (100°CA (BTDC)), was as follows: at a fixed ID of 24°CA, with retarded hydrogen IT, the stratification phenomenon of hydrogen became obvious increasingly, and the hydrogen distribution area moved towards the back of the combustion chamber continuously. At a fixed IT of 210°CA (BTDC), with the extension in ID, the accumulation area of hydrogen reduced significantly, and the hydrogen continued to gather in the middle of the combustion chamber. For combustion process, the overall combustion rate for the hydrogen injection strategy which had an IT of 210°CA (BTDC) and ID of 40°CA (case ID5), was the fastest. This was due to the fact that compared with the leading spark plug (LSP), the combustion condition around the trailing spark plug (TSP) has a great influence on the combustion process. For case ID5 at ignition timing, the hydrogen concentration near the TSP is high enough for the rapid formation of flame kernel. Compared with case IT1 which had an IT of 390°CA (BTDC) and an ID of 24°CA, the improved combustion rate of case ID5 had a 11.7% increase in peak pressure, and a 7% decrease in NO emissions.  相似文献   

13.
《Energy》2005,30(2-4):447-459
This paper focuses on the effects of early stage injection and two-stage injection on the combustion characteristics and engine performances of an indirect injection (IDI) diesel engine. In a direct injection (DI) diesel engine, HC emission increases with early stage injection because some of the fuel spray adheres to the cylinder wall and burns in the gap between the piston and the cylinder. On the other hand, since the fuel spray of early stage injection in an IDI diesel engine is injected into an auxiliary combustion chamber such as a swirl chamber, the IDI diesel engine could reduced the HC emission produced from the gap compared with a DI diesel engine. In a two-stage injection IDI diesel engine, NO and smoke emissions are improved when the amount of fuel in the first stage injection is small and the first stage injection timing is advanced over −80° TDC. And 20% improvement in fuel consumption is achieved when the first stage injection timing is advanced over −80° TDC. Conversely, HC and CO emissions of two-stage injection increases compared with that of conventional injection of an IDI diesel engine. However, CO emission can be improved a little when the first stage injection timing is advanced over −100° TDC and the second stage injection timing is retarded over TDC.  相似文献   

14.
The present study experimentally investigated the performance and emission characteristics of the diesel engine with hydrogen added to the intake air at late diesel-fuel injection timings. The diesel-fuel injection timing and the hydrogen fraction in the intake mixture were varied while the available heat produced by diesel-fuel and hydrogen per second of diesel fuel and hydrogen was kept constant at a certain value. NO showed minimum at specific hydrogen fraction. The maximum rate of incylinder pressure rise also showed minimum at 10 vol. % hydrogen fraction. However, it is desirable to set the maximum rate of incylinder pressure rise less than 0.5 MPa/deg. to realize low level of combustion noise and NO emission. We attempt to reduce further NO and smoke emissions by EGR. As the result, in the case of the diesel-fuel injection timing of −2 °. ATDC with 3.9 vol. % hydrogen addition, the smoke emission value was 0%, NO emission was low, the cyclic variation was low, and the maximum rate of incylinder pressure rise was acceptable under a nearly stoichiometric condition without sacrificing indicated thermal efficiency.  相似文献   

15.
In this paper, the effects of direct water injection (WI) on characteristics of combustion and emission for a hydrogen (H2)-fueled spark ignition (SI) engine were experimentally investigated. The experiments conducted under different amounts of water injection (AWI) and varied water injection timing (WIT). The experimental results showed that in-cylinder pressure decreased, indicated thermal efficiency (ITE) increased, and the flame development (CA0-10) and propagation (CA10-90) periods prolonged when AWI raised. When AIW grew to 4.5 mg/cycle, Nitrogen oxides (NOx) expelled from the original engine decreased by 53.7% when excess air ratio (λ) was 1.15. Early WIT had positive effects on the reduction of NOx emissions. When WIT retarded, in-cylinder pressure increased, ITE decreased and CA0-10 and CA10-90 shortened, NOx emissions rapidly increased.  相似文献   

16.
Hydrogen internal combustion engines (ICE) will play an important role in reducing carbon emissions, but low power density and abnormal combustion problems are the main obstacles restricting the promotion of hydrogen ICE. Ammonia is a low-reactivity renewable fuel. The purpose of this study is to study the effect of different ammonia-added volume fractions on hydrogen ICE. In this experimental study, the combustion and emission characteristics of an engine fueled by a hydrogen/ammonia mixture were evaluated at part-load operating conditions. The experiment was carried out on a modified engine, the engine speed was 1300 rpm, the absolute pressure of the manifold was 61 kPa, and the volume fraction of ammonia added was 5.2%, 7.96%, and 10.68%, respectively. The test results show that the addition of ammonia changes the combustion characteristics of hydrogen. As the volume fraction of ammonia added increases, the flame development period and flame propagation period are both prolonged, and the peak heat release rate decreases. The addition of ammonia increases the power of the engine and reduces the indicated thermal efficiency. At the ignition timing of the maximum braking torque, as the volume fraction of ammonia added increases, the indicated mean effective pressure and indicated thermal efficiency increase. Adding ammonia volume fraction has little effect on Nitrogen oxides (NOx) emissions, and NOx emissions gradually increase with the delay of ignition timing.  相似文献   

17.
A 3-cylinder, 1100 cc two-stroke gasoline engine was converted into a hot-surface-ignition hydrogen injection diesel engine for a new hydrogen car named Musashi 5. This engine had a compression ratio of 12:1, and the high pressure hydrogen at 6 MPa was injected into an open combustion chamber near the TDC. In practice, it showed some problems in terms of the high pressure liquid hydrogen pump, the hot surface ignition and efficient combustion. Efforts were made to solve the problems, and the results were as follows: (1) a high pressure pump was obtained through the precise finish on the sliding surfaces of the barrel and plunger, and by the combination of appropriate material and dimensions; (2) a gentle diesel ignition was attained by blowing hydrogen gas onto the platinum wire at 1000°C from a close location; (3) the mixture formation was improved, and the maximum power equivalent to 125% of gasoline was obtained by a proper selection of combustion chamber shape, number of injection nozzles, direction of injection, etc.  相似文献   

18.
基于三维计算流体动力学(CFD)软件CONVERGE,耦合甲苯掺比燃料(toluene reference fuel,TRF)简化动力学机理及多步现象学碳烟模型,建立汽油压燃(GCI)的数值模拟模型。通过改变气道喷射比例、主喷时刻和预主喷间隔研究了高负荷条件下气道喷射结合缸内直喷的喷油策略对GCI燃烧及碳烟生成过程的影响。研究结果表明,增加气道喷射比例、提前主喷时刻和增大预主喷间隔都能够缩短燃烧持续期,使放热更为集中,从而降低碳烟排放;改变气道喷射比例对碳烟成核及表面生长有较大的影响,主喷时刻提前能够提高氧化速率。当气道喷射比例为40%,主喷时刻为-8°,预主喷间隔为15°时,碳烟排放为0.015 1g/(kW·h),相比试验基准工况降低了33.8%,而最大压升率也控制在可接受的范围内。  相似文献   

19.
Recently, the increasing demand for energy requires the use of alternative fuels, especially in fossil fueled power systems. As a promising alternative fuel for next-generation diesel engines that utilize fossil fuel, hydrogen fuel is one step ahead due to its positive properties. In this study, the effects of hydrogen on the performance of a diesel engine have been numerically investigated with respect to different injection ratios and timings. The numerical results of the study for 25% load conditions on a single-cylinder, four-stroke diesel engine have been validated against experimental data taken from literature and good agreement has been observed for pressure results. Emission parameters such as NOx, CO and performance parameters such as cylinder temperature, pressure, power, thermal efficiency and IMEP are presented comparatively.The results of numerical analyses show that the maximum pressure, temperature and heat release rate are observed with injection ratio of H15 and early injection timing (20° CA BTDC). Besides that, engine power, thermal efficiency and IMEP are greatly improved with increasing injection ratio and early injection timing. Although combustion chamber performance parameters improve with rising the hydrogen injection ratio, higher NOx emissions have also been detected as a negative side effect. Furthermore, while early injection timing increases diesel engine performance, it also causes an increase in NOx emissions. Therefore, precise determination of injection timing together with the optimum amount of hydrogen has revealed that it brings crucial improvement in engine performance and emissions.  相似文献   

20.
A four-cylinder four-stroke water-cooled gasoline engine with spark ignition is refitted to an in-cylinder injection spark-ignition hydrogen-fuelled engine, and the concept of its test apparatus is set up. The study to be reported in this paper focuses mainly on modification for its hydrogen supply system and combustion system to solve such problems as small power output and abnormal combustion in a hydrogen-fuelled engine. A fast response solenoid valve, which possesses good switch characteristics and very fast response, and its electronic control system are described. A high pressure hydrogen injector is designed to improve hydrogen jet penetration and mixture formation in the combustion chamber, and to prevent backfire occurring in the hydrogen supply pipe between the fast response valve and the combustion chamber. Ignition by spark plug is adopted and an Intel 8098 chip microprocessor is developed to control ignition and injection timing optimally. This study shows that abnormal combustion, such as backfire, pre-ignition, high pressure rise rate and knock, can be controlled and performance of the engine can be improved by means of this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号