首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In India, annually about 3.3–5 million tons of cheese whey is produced which may causes serious problems for the environment if left untreated. In this study, pretreated cheese whey was utilized to produce hydrogen via dark fermentation by Enterobacter aerogenes 2822 cells in 2 L double walled cylindrical bioreactor having working volume of 1.5 L. Effect of change in total carbohydrate concentration in cheese whey (CWTC, 20–45 g L?1), temperature (T, 25–37 °C) and pH (5.5–7.5) was investigated on volumetric hydrogen production rate (VHPR) using Box Behnken design (BBD). Experimental VHPR of 24.7 mL L?1 h?1 was attained at an optimum concentration of 32.5 g L?1 CWTC, 31 °C T and 6.5 pH, which was in good correlation with predicted rate of 23.2 mL L?1 h?1. Mathematical models based on Monod and logistic equations were developed to describe the kinetics of substrate consumption and growth profile of E. aerogenes 2822 under optimum conditions. While for the modelling of fermentative hydrogen production in batch mode, Modified Gompertz equation and Leudeking-Piret models were used which gave proper simulated fitting. These results will add significant values to cheese whey by converting it into a clean form of bioenergy.  相似文献   

2.
This study explored the fermentative hydrogen production by immobilized microorganisms from glycerol, which is the byproduct of biodiesel production, and compared it with suspended fermentation. The effect of immobilization on hydrogen production process was examined. Results showed that both cumulative hydrogen production (CHP) and hydrogen yield (HY) were enhanced by microbial immobilization. The highest CHP and HY of 64 mL/100 mL and 0.52 mol H2/mol glycerol were obtained by immobilized microorganisms, compared to 9 mL/100 mL and 0.29 mol H2/mol glycerol in suspended microorganisms. Immobilization enhanced CHP and HY by 611.1% and 79.3%. In addition, immobilized microorganisms showed stronger tolerance to high substrate concentration and higher capability in glycerol utilization, which is of great significance for hydrogen production from glycerol. The enhanced hydrogen production may be due to the favorable micro-environment for different microorganisms in immobilized beads.  相似文献   

3.
Biological hydrogen production using renewable resources is a promising possibility to generate hydrogen in a sustainable way. In this study, a sequential dark and photofermentation has been employed for biohydrogen production using sugar beet molasses as a feedstock. An extreme thermophile Caldicellulosiruptor saccharolyticus was used for the dark fermentation, and several photosynthetic bacteria (Rhodobacter capsulatus wild type, R. capsulatus hup mutant, and Rhodopseudomonas palustris) were used for the photofermentation. C. saccharolyticus was grown in a pH-controlled bioreactor, in batch mode, on molasses with an initial sucrose concentration of 15 g/L. The influence of additions of NH4+ and yeast extract on sucrose consumption and hydrogen production was determined. The highest hydrogen yield (4.2 mol of H2/mol sucrose) and maximum volumetric productivity (7.1 mmol H2/Lc.h) were obtained in the absence of NH4+. The effluent of the dark fermentation containing no NH4+ was fed to a photobioreactor, and hydrogen production was monitored under continuous illumination, in batch mode. Productivity and yield were improved by dilution of the dark fermentor effluent (DFE) and the additions of buffer, iron-citrate and sodium molybdate. The highest hydrogen yield (58% of the theoretical hydrogen yield of the consumed organic acids) and productivity (1.37 mmol H2/Lc.h) were attained using the hup mutant of R. capsulatus. The overall hydrogen yield from sucrose increased from the maximum of 4.2 mol H2/mol sucrose in dark fermentation to 13.7 mol H2/mol sucrose (corresponding to 57% of the theoretical yield of 24 mol of H2/mole of sucrose) by sequential dark and photofermentation.  相似文献   

4.
This study aims to utilize magnetite nanoparticles (MNP) embedded in granular activated carbon (GAC) originating from coconut shells as microbial support carriers in thermophilic biohydrogen production. MNP can facilitate intracellular electron transportation while providing essential nutrition for microbial growth. Response Surface Methodology (RSM) with a Central Composite Design was used to investigate the simultaneous effect of three variables; Ni:Fe (0.25–0.80), MNP:GAC (0.01–0.03) and type of GAC (GAC-O or GAC-C) on the hydrogen productivity rate (HPR). Biohydrogen content in the biogas to range from 22.25 to 64.71%. The quadratic model was well fitted (R-squared>0.80) with a confidence level higher than 90%. The optimum magnetite GAC was GAC-O as the preferred GAC at Ni:Fe (0.53) and MNP:GAC (0.02), with HPR of 20.33 ± 0.32 ml H2/L.h. Magnetite GAC exhibited a better biohydrogen productivity rate by 63.99% compared to non-magnetite GAC. The developed magnetite GAC shown a high potential to improve biohydrogen production.  相似文献   

5.
Immobilized cell bioreactor was operated in batch mode for biohydrogen generation by dark fermentation from acid hydrolyzed waste wheat powder. It was aimed to optimize the fermentation conditions with the purpose of obtaining the highest hydrogen yield (YH2) and production rate (HPR) by applying Box–Wilson statistical experimental design method. Particle number (PN = 120–240; X1), initial total sugar concentration (TS0 = 10–30 g/l; X2) and fermentation temperature (T = 35–55 °C; X3) were selected as independent variables. Polyester fibers with particle diameter “Dp” = 0.5 cm were used as support material to immobilize microorganisms with heat-pretreated sludge. Quadratic equations for production yield and rate were developed by using experimental results. The maximum YH2 (3.21 mol H2/mol glucose) and HPR (73.3 ml H2/h) were predicted at the optimum conditions of PN = 240, TS0 = 10 g/l and T = 44.9 °C. Also, analysis of variance, as well as sum of ranking difference test results demonstrated that fitting models were statistically significant.  相似文献   

6.
Global research is moving forward in developing biological production of hydrogen (biohydrogen) as a renewable energy source to alleviate stresses due to carbon dioxide emissions and depleting fossil fuels resource. Biohydrogen has the potential to replace current hydrogen production technologies relying heavily on fossil fuels through electricity generation. While biohydrogen research is still immature, extensive work on laboratory- and pilot-scale systems with promising prospects has been reported. This work presents a review of advances in biohydrogen production focusing on production pathways, microbiology, as well as bioreactor configuration and operation. Challenges and prospects of biohydrogen production are also outlined.  相似文献   

7.
Macroalgae are rich in carbohydrates which can be used as a promising substrate for fermentative biohydrogen production. In this study, Cladophora sp. biomass was fermented for biohydrogen production at various inoculum/substrate (I/S) ratios against a control of inoculum without substrate in laboratory-scale batch reactors. The biohydrogen production yield ranged from 40.8 to 54.7 ml H2/g-VS, with the I/S ratio ranging from 0.0625 to 4. The results indicated that low I/S ratios caused the overloaded accumulation of metabolic products and a significant pH decrease, which negatively affected hydrogen production bacteria's metabolic activity, thus leading to the decrease of hydrogen fermentation efficiency. The overall results demonstrated that Cladophora sp. biomass is an efficient fermentation feedstock for biohydrogen production.  相似文献   

8.
Waste generation, waste management, sustainable energy production, and global warming are interrelated environmental issues to be considered together. Wastewater treatment sludge is an organic substance rich waste which causes significant environmental problems. However, these wastes can be used as raw material in biofuel generation. This study was designed to investigate the possible utilization of waste sludge in biohydrogen production by taking these facts into consideration. For this purpose, the sludge was first pre-treated with acid and then, the solid (sludge) and liquid (filtrate) phases of acid pre-treated sludge were used as the substrates for biohydrogen generation dark fermentation. Two-factor factorial experimental design method was used in acid hydrolysis of sludge to determine the effect of pH (pH = 2–6) and reaction period (time, min) elution of chemical oxygen demand (COD), total organic carbon (TOC) and total sugar (TS), NH4N and PO4P. Statistical evaluation of the results indicated that pH significantly affects the elution of organic carbon and nutrient content of sludge while the reaction time is significant for only organic carbon content. The optimum pretreatment conditions for maximum organic and nutrient elution were determined as pH = 2 and t = 1440 min. The pretreated products, named as filtrate sludge and sludge, conducted to dark fermentation under mesophilic conditions for biohydrogen generation showed that pretreatment of waste sludge at pH = 6 is the best condition giving the maximum yields (YH2) as YH2 = 24 mmol g−1 Total Sugar consumed and YH2 = 41 mmol g−1 Total sugar consumed, for filtrate and sludge, respectively.  相似文献   

9.
Free-standing carbon nanotube films (CNTF) with entangled carbon nanotubes (CNT) were used as conductive supports for the preparation of CuS–ZnS/CNTF composite as immobilized photocatalysts for H2 production. The surface morphology, crystalline property, surface chemistry, and optical properties of the CuS–ZnS/CNTF photocatalysts were investigated. The effects of forming CuS–ZnS heterojunction and conductive CNTF on the separation of photogenerated charges and photocatalytic hydrogen production activity of CuS–ZnS/CNTF photocatalysts were evaluated by the photocatalytic hydrogen production tests. Conductive CNT films can prevent the recombination of photogenerated electron–hole pairs. The deposition of CuS nanoparticles on the ZnS/CNTF leads to higher photocatalytic activity which can be attributed to the effective electron–hole separation. Introducing ZnS and CuS makes the photocatalyst surface more hydrophilic. The porous structure contributed to the effective contact between the sacrificing agents and the photocatalysts, leading to enhanced H2 production activity.  相似文献   

10.
Hydrogen is a clean energy carrier which can be used as fuel in fuel cells. Today, hydrogen is produced mainly by steam reforming of fossil fuels like natural gas or oil. But only hydrogen produced by renewable sources can be called clean energy production. One possibility for hydrogen production is the biological fermentation of biogenous wastes by hydrogen producing bacteria. For the experimental setup four 30-L-working-volume reactors were constructed for continuous biohydrogen production. As inoculum, heat-treated sludge of a wastewater treatment plant was used. Different hydraulic retention times (HRT) were tested and an organic loading rate (OLR) of 2–14 kg VS/m3*d. As starting substrate, waste sugar medium was used. The pH and other parameters were observed to find boundary conditions for a stable continuous process with a minimum of online-control measurements. The high concentration of organic acids in the reactor led to a very low pH, which was controlled manually and online > 4 up to 5.5, otherwise the biohydrogen production decreased rapidly. The gas amount varied with the different OLRs, but could be stabilised on a high level as well as the hydrogen concentration in the gas with 44–52%. No methane was detected in the gas. It turned out, that continuous biohydrogen production with stable gas amounts and qualities could be achieved at different operation conditions. The results showed, that the operation of a continuous biohydrogen reactor has to be observed very carefully to ensure a constant gas production, and that pH-control is necessary to ensure stable operation conditions.  相似文献   

11.
A novel hydrogen-producing strain was isolated from gamma irradiated digested sludge and identified as Clostridium butyricum INET1. The fermentative hydrogen production performance of the newly isolated C. butyricum INET1 was characterized. Various carbon sources, including glucose, xylose, sucrose, lactose, starch and glycerol were used as substrate for hydrogen production. The operational conditions, including temperature, initial pH, substrate concentration and inoculation proportion were evaluated for their effects on hydrogen production, and the optimal condition was determined to be 35 °C, initial pH 7.0, 10 g/L glucose and 10% inoculation ratio. Cumulative hydrogen production of 218 mL/100 mL and hydrogen yield of 2.07 mol H2/mol hexose was obtained. The results showed that C. butyricum INET1 is capable of utilizing different substrates (glucose, xylose, sucrose, lactose, starch and glycerol) for efficient hydrogen production, which is a potential candidate for fermentative hydrogen production.  相似文献   

12.
Leaves are one of the main by-products of forestry. In this study, batch experiments were carried out to convert poplar leaves pretreated by different methods into hydrogen using anaerobic mixed bacteria at 35 °C. The effects of acid (HCl), alkaline (NaOH) and enzymatic (Viscozyme L, a mixture of arabanase, cellulase, β-glucanase, hemicellulase and xylanase) pretreatments on the saccharification of poplar leaves were studied. Furthermore, the effects of acid and enzymatic pretreatment on hydrogen production, together with their corresponding degradation efficiencies for the total reducing sugar (TRS) and metabolites were compared. A maximum cumulative hydrogen yield of 44.92 mL/g-dry poplar leaves was achieved from substrate pretreated with 2% Vicozyme L, which was approximately 3-fold greater than that in raw substrate and 1.34-fold greater than that from substrate pretreated with 4% HCl. The results show that enzymatic pretreatment is an effective method for enhancing the hydrogen yield from poplar leaves.  相似文献   

13.
Thermophilic dark fermentative hydrogen producing bacterial strain, TERI S7, isolated from an oil reservoir flow pipeline located in Mumbai, India, showed 98% identity with Thermoanaerobacterium thermosaccharolyticum by 16S rRNA gene analysis. It produced 1450–1900 ml/L hydrogen under both acidic and alkaline conditions; at a temperature range of 45–60 °C. The maximum hydrogen yield was 2.5 ± 0.2 mol H2/mol glucose, 2.2 ± 0.2 mol H2/mol xylose and 5.2 ± 0.2 mol H2/mol sucrose, when the respective sugars were used as carbon source. The cumulative hydrogen production, hydrogen production rate and specific hydrogen production rate by the strain TERI S7 with sucrose as carbon source was found to be 1704 ± 105 ml/L, 71 ± 6 ml/L/h and 142 ± 13 ml/g/h respectively. Major soluble metabolites produced during fermentation were acetic acid and butyric acid. The strain TERI S7 was also observed to produce hydrogen continuously up to 48 h at pH 3.9.  相似文献   

14.
Utilization of hydrogen as fuel lights into various technological, economic and ecological challenges. High production cost and low yield are main drawbacks of commercial hydrogen production methods. Hydrogen production by biological methods helps to overcome these issues owing to its merit such as cost-effective, non-pollutant, recyclability and efficiency in energy conversion. Research has been conducted in utilizing cyanobacteria and algal species for producing biohydrogen utilizing solar light and other sources. Developments have been made for improving biohydrogen productivity through genetic and metabolic engineering. This review outlines the importance of biohydrogen and the constraints in producing biohydrogen in detail. Biohydrogen production can be facilitated using photolysis, fermentation and electrochemical processes. Bioreactors can be used effectively with specific designs and configuration for increasing productivity. The challenges faced during biological production and methods to overcome those demerits are also included for bringing the uncharted principles for producing biohydrogen in an efficient method.  相似文献   

15.
Degenerated strains of Clostridium acetobutylicum lack the ability to produce solvents and to sporulate, allowing the continuous production of hydrogen and organic acids. A degenerated strain of Clostridium acetobutylicum was obtained through successive batch cultures. Its kinetic characterization showed a similar specific growth rate than the wild type (0.25 h?1), a higher butyric acid production of 6.8 g·L?1 and no solvents production. A steady state was reached in a continuous culture at a dilution rate of 0.1 h?1, with a constant hydrogen production of 507 mL·h?1, corresponding to a volumetric rate of 6.10 L·L?1 d?1, and a yield of 2.39 mol of H2 per mole of glucose which represents 60% of the theoretical maximum yield. These results suggest that the degeneration is an interesting alternative for hydrogen production with this strain, obtaining a high hydrogen production in a continuous culture with cells in a permanent acidogenic state.  相似文献   

16.
Biohydrogen and subsequent biomethane generation from biomass is a promising strategy for renewable energy supply, because this combination can lead to higher energy recovery efficiency and faster fermentation than single methane fermentation. Microbial consortium control by retaining hydrogen-producers through the addition of microbial carriers is an alternative to constructing hydrogen-producing reactors. Here we report the use of carbon nanotubes (CNTs) as microbial carriers to enhance microbial retention and the production of biohydrogen. Laboratory-scale upflow anaerobic sludge blanket (UASB) reactors with CNTs at 100 mg/L achieved a maximal hydrogen production rate of 5.55 L/L/d and a maximal hydrogen yield of 2.45 mol/mol glucose. Compared to frequently used activated carbon (AC) particles, CNTs resulted in quicker startup and better performance of hydrogen fermentation in UASB reactors. Scanning electron microscopy (SEM) and pyrosequencing results revealed that the reactor with CNTs led to a high proportion of hydrogen-producing bacteria among the microbial consortium, which endowed the microbes with strong flocculation capacity and hydrogen productivity.  相似文献   

17.
Using anaerobic micro-organisms to convert organic waste to produce hydrogen gas gives the benefits of energy recovery and environmental protection. The objective of this study was to develop a biohydrogen production technology from food wastewater focusing on hydrogen production efficiency and micro-flora community at different hydraulic retention times. Soluble condensed molasses fermentation (CMS) was used as the substrate because it is sacchariferous and ideal for hydrogen production. CMS contains nutrient components that are necessary for bacterial growth: microbial protein, amino acids, organic acids, vitamins and coenzymes. The seed sludge was obtained from the waste activated sludge from a municipal sewage treatment plant in Central Taiwan. This seed sludge was rich in Clostridium sp.A CSTR (continuously stirred tank reactor) lab-scale hydrogen fermentor (working volume, 4.0 L) was operated at a hydraulic retention time (HRT) of 3–24 h with an influent CMS concentration of 40 g COD/L. The results showed that the peak hydrogen production rate of 390 mmol H2/L-d occurred at an organic loading rate (OLR) of 320 g COD/L-d at a HRT of 3 h. The peak hydrogen yield was obtained at an OLR of 80 g COD/L-d at a HRT of 12 h. At HRT 8 h, all hydrogenase mRNA detected were from Clostridium acetobutylicum-like and Clostridium pasteurianum-like hydrogen-producing bacteria by RT-PCR analysis. RNA based hydrogenase gene and 16S rRNA gene analysis suggests that Clostridium exists in the fermentative hydrogen-producing system and might be the dominant hydrogen-producing bacteria at tested HRTs (except 3 h). The hydrogen production feedstock from CMS is lower than that of sucrose and starch because CMS is a waste and has zero cost, requiring no added nutrients. Therefore, producing hydrogen from food wastewater is a more commercially feasible bioprocess.  相似文献   

18.
Food waste (FW) can be utilized as a raw material to produce energy such as hydrogen via fermentation, which is a more attractive and environmentally friendly approach compared to incineration and land-filling. Food waste must be pretreated before being used in various biological processes. The choice of the pretreatment method usually depends on the composition of the food waste. Therefore, various pretreatment methods generally employed to treat FW, including physical, physiochemical, chemical and biological pretreatments, are summarized in this review. The different pretreatment methods are compared in terms of their efficiency and biohydrogen yield. Additionally, the energy efficiencies of the various pretreatment methods are compared, thereby leading to the selection of the most efficient pretreatment method.  相似文献   

19.
Twenty-six new data envelopment analysis (DEA) models with 55 biohydrogen production experiments categorized into three groups including dark fermentation (DF), photo fermentation (PF), and dark-photo sequential fermentation (DF-PF) technologies, are used to evaluate their biohydrogen yield efficiency. The results reveal the average yield efficiencies of DF, PF and DF-PF are 0.2844, 0.3460 and 0.7040, respectively. The most efficient overall combination of biohydrogen inputs is PhBR1/Rhodobacter capsulatus B10/Rhodobacter capsulatus in DF-PF. Statistical tests demonstrate DF-PF has statistically double the efficiency of PF and DF, and the efficiency of PF significantly exceeds that of DF, supporting some of the literature findings. A flexible DEA model must be carefully chosen when evaluating biohydrogen production. All inputs and outputs of biohydrogen statistically influenced yield efficiency to a significant level. India and Japan are the top two economies benefitting from improved biohydrogen yield efficiency. Improving biohydrogen yield efficiency can improve macroeconomic growth and develop the renewable hydrogen and biohydrogen industry.  相似文献   

20.
In the study, the production of biohydrogen by extracted fermentation from sugar beet was evaluated. Effects of initial amount of sugar beet, biomass and particle size of sugar beet on biohydrogen formation were investigated. The hydrogen (H2) gas was predicted to be 78.6 mL at initial dry weight of sugar beet 24.6 g L?1 and H2 yield was calculated as 81.9 mLH2 g?1TOC while biomass concentration (1 g L?1) and particle size (0.3 cm) were constant. The peak H2 gas volume was predicted to be 139.9 mL at the low particle size of 0.1 cm. Hydrogen gas production potential was predicted as 143.6 mL h?1. The peak value of 197.9 mLH2 g?1TOC was obtained with particle size of 0.1 cm when dry weight of sugar beet and initial amount of biomass was kept constant at 24.6 g L?1 and 1 g L?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号