共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2019,44(21):11194-11204
In this paper, a new kind of injection mode, split hydrogen direct injection, was presented for a dual fuel SI engine. Six different first injection proportions (IP1) and five different second injection timings were applied at the condition of excess air ratio of 1, first injection timing of 300°CA BTDC, low speed, low load conditions and the Minimum spark advance for Best Torque (MBT) on a dual fuel SI engine with hydrogen direct injection (HDI) plus port fuel injection (PFI). The result showed that, split hydrogen direct injection can achieve a higher brake thermal efficiency and lower emissions compared with single HDI. In comparison with single HDI, the split hydrogen direct injection can form a controlled stratified condition of hydrogen which could make the combustion more complete and faster. By adding an early spray to form a more homogeneous mixture, the split hydrogen direct injection not only can help to form a flame kernel to make the combustion stable, but also can speed up the combustion rate through the whole combustion process, which can improve the brake thermal efficiency. By split hydrogen direct injection, the torque reaches the highest when the first injection proportion is 33%, which improves by 1.13% on average than that of single HDI. With the delay of second injection timing, the torque increases first and then decreases. With the increase of first injection proportion, the best second injection timing is advanced. Furthermore, by forming a more homogeneous mixture, the split hydrogen direct injection can reduce the quenching distance to reduce the HC emission and reduce the maximum temperature to reduce the NOX. The split hydrogen direct injection can reduce the HC emission by 35.8%, the NOX emissions by 7.3% than that of single HDI. 相似文献
2.
《International Journal of Hydrogen Energy》2021,46(63):32261-32272
To investigate the property of the promising and eco-friendly hydrogen-fueled rotary engine, the effect of excess air ratio on the combustion and emission characteristic of it was explored by experiment. The test was conducted under 1500 rpm and 5 CAD ADTC ignition timing. The test results demonstrated that with the decrease of excess air ratio from 2 to 0.85, the thermal efficiency of the hydrogen-fueled rotary engine increases first and then decreases. Besides, increasing MAP is beneficial to improve thermal efficiency. Among the tested condition, the highest brake thermal efficiency is realized when the rotary engine operates at 1.4 excess air ratio and 88 kPa MAP, about 18.34%. And the excellent HC and NO emissions can be obtained at the highest efficiency point. Besides, with the decrease of excess air ratio and the increase of load, the stability and flame development period gradually decrease. With a decreased excess air ratio, the flame propagation period decrease first and then increases, whereas work capacity and thermal efficiency increase first and then decrease. For NO emission, it will increase sharply near the equivalent ratio and gradually decrease after rich combustion. Also, according to the analytical model, it is found that the power performance of the rotary engine depends on the trade-off relationship of in-cylinder pressure and its angle of action. 相似文献
3.
《International Journal of Hydrogen Energy》2019,44(39):22301-22315
In this paper, a dual-fuel engine test rig with gasoline injected in the intake port and gasoline (or hydrogen) injected directly into the cylinder is built up; therefore, two injection models are realized. One is port fuel injection + gasoline direct injection (PFI + GDI), the other is port fuel injection + hydrogen direct injection (PFI + HDI). And the effects of two injection models on heat and exergy balance are investigated experimentally. The results show that, from the perspective of the first law of thermodynamics (heat balance), no matter what the injection mode is, the heat proportion of cooling water is the largest, the exhaust heat ratio and brake power are the second, which two are roughly equivalent, and the uncounted loss is the least. In PFI + GDI mode, the local mixture is too dense due to the increase of mixing ratio, which leads to insufficient combustion and a slight decrease of brake power ratio. However, due to the special characteristics of hydrogen, the increase of direct injection ratio improves the brake power ratio in PFI + HDI mode. Moreover, because of the short quenching distance of hydrogen, the cooling loss rises up with the increase of hydrogen ratio. The engine speed and load also have great impacts on heat distribution, but on account of the different physical and chemical properties between gasoline and hydrogen, resulting in varying degrees of impact and trends. On the basis of the second law of thermodynamics (exergy balance), it is found that no matter what injection mode is, the ratio of exergy destruction is always the highest, accounting for half of the total fuel energy, and the exhaust exergy ratio is lower than the brake power ratio. However, the proportion of exergy contained in cooling water is the smallest, which is quite different from the result of the first law of thermodynamics. The influences of several factors on engine energy balance are analyzed, and the differences and similarities between heat balance and exergy balance are compared. The two analytical methods are interrelated and complementary, and the purpose is to find a reasonable and comprehensive energy balance analysis method for internal combustion engine. 相似文献
4.
Puyan Xu Changwei Ji Shuofeng Wang Xiaoxin Bai Xiaoyu Cong Teng Su Lei Shi 《International Journal of Hydrogen Energy》2018,43(46):21617-21626
In this paper, the effects of excess air ratios (λ) on nitric oxide (NOx) emissions of a hydrogen-fueled spark ignition engine in the cold start period are studied. Cold start characteristics of hydrogen-fueled engine were investigated experimentally. The study was performed under different λ. The experimental results showed that, when λ declined from 1.6 to 0.7, the peak engine speed within the first 6 s increased and in-cylinder pressure in the first cycle raised firstly then decreased slightly while the flame development and propagation periods shortened, and the exhaust temperature at the 6th s raised from 329 K to 355 K. In addition, NOx emissions obviously decreased, whereas hydrocarbon (HC) and carbon monoxide (CO) emissions caused by the evaporated lubricant oil increased by decreasing λ within the first 6 s. 相似文献
5.
《International Journal of Hydrogen Energy》2020,45(3):2341-2350
A numerical study on effects of hydrogen direct injection on hydrogen mixture distribution, combustion and emissions was presented for a gasoline/hydrogen SI engine. Under lean burn conditions, five different direct hydrogen injection timings were applied at low speeds and low loads on SI engines with direct hydrogen injection (HDI) and gasoline port injection. The results were showed as following: firstly, with the increase of hydrogen direct injection timing, the hydrogen concentration near the sparking plug first increases and then decreases, reaching the highest when hydrogen direct injection timing is 120°CA BTDC: Secondly, hydrogen can speed up the combustion rate. The main factor affecting the combustion rate and efficiency is the hydrogen concentration near the sparking plug: Thirdly, in comparing with gasoline, the NOX emissions with hydrogen addition increase by an average of 115%. For different hydrogen direct injection timings, the NOX emissions of 120°CA BTDC is the highest, which is 29.9% higher than the 75°CA BTDC. The hydrogen addition make the NOX emissions increase in two ways. On the one hand, the average temperature with hydrogen addition is higher. On the other hand, the temperature with hydrogen addition is not homogeneous, which makes the peak of temperature much higher. In a word, the main factor of NOX emissions is the size of high temperature zone in the cylinder: Finally, because the combustion is more complete, in comparing with gasoline, hydrogen addition can reduce the CO and HC emissions by 32.2% and 80.4% respectively. Since a more homogeneous hydrogen mixture distribution can influence a lager zone in the cylinder and reduce the wall quenching distance, these emissions decrease with the increase of hydrogen direct injection timing. The CO and HC emissions of 135°CA BTDC decrease by 41.5% and 71.4%, respectively, compared to 75°CA BTDC. 相似文献
6.
Xiumin Yu Decheng Li Ping Sun Guanting Li Song Yang Chuanzhao Yao 《International Journal of Hydrogen Energy》2021,46(11):8253-8268
Hydrogen is considered to be a suitable supplementary fuel for Spark Ignition (SI) engines. The energy and exergy analysis of engines is important to provide theoretical fundaments for the improvement of energy and exergy efficiency. However, few studies on the energy and exergy balance of the engine working under Hydrogen Direct Injection (HDI) plus Gasoline Port Injection (GPI) mode under lean-burn conditions are reported. In this paper, the effects of two different modes on the energy and exergy balance of a SI engine working under lean-burn conditions are presented. Two different modes (GPI + GDI and GPI + HDI), five gasoline and hydrogen direct injection fractions (0, 5%, 10%, 15%, 20%), and five excess air ratios (1, 1.1, 1.2, 1.3, 1.4) are studied. The results show that the cooling water takes the 39.40% of the fuel energy on average under GPI + GDI mode under lean-burn conditions, and the value is 40.70% for GPI + HDI mode. The exergy destruction occupies the 56.12% of the fuel exergy on average under GPI + GDI mode under lean-burn conditions, and the value is 54.89% for GPI + HDI mode. The brake thermal efficiency and exergy efficiency of the engine can be improved by 0.29% and 0.31% at the excess air ratio of 1.1 under GPI + GDI mode on average, and the average values are 0.56% and 0.71% for GPI + HDI mode. 相似文献
7.
Ali Şanlı İlker Turgut Yılmaz Metin Gümüş 《International Journal of Hydrogen Energy》2021,46(47):24395-24409
In this study, an experimental investigation was performed to reveal combustion and emission characteristics of common-rail four-cylinder diesel engine run with CH4, CO2 and H2 mixtures. The engine pistons were thermally coated with zirconia and Ni–Al bond coat by plasma spray method. With a small amount of the pilot diesel, port fuelled methane (100% CH4), synthetic biogas (80% CH4 + 20% CO2), and hydrogen presented (80% CH4+10% CO2+10% H2) mixtures were used as main fuel at different loads (50 Nm, 75 Nm, and 100 Nm) at a constant speed of 1750 min?1. Comparative analysis of the combustion (cylinder pressure, PRR, HRR, CHR, ringing intensity, CA10, CA50, and CA90), BSFC, and emissions (CO2, HC, NOx, smoke, and oxygen) at the various engine loads with and without piston coating was made for all fuel combinations. It was found that coating the engine pistons enhanced the examining combustion characteristics, whereas it slightly changed BSFC and most of the emissions. As compared to the sole diesel fuel, the gaseous fuel operations showed higher in-cylinder pressure, PRR, and ringing intensity values, earlier combustion starting and CAs, and lower diesel injection pressure at the same engine operating conditions. Dramatic increase in the ringing intensity was particularly found by the hydrogen introduced mixture under the tests with coated piston. HC and CO2 emissions increased in operation with the synthetic biogas; however, hydrogen introduction reduced HC emissions by 4.97–30.92%, and CO2 emissions by 5.16–10%. 相似文献
8.
《International Journal of Hydrogen Energy》2022,47(57):24069-24079
Hydrogen is a carbon free energy carrier with high diffusivity and reactivity, it has been proved to be a kind of suitable blending fuel of spark ignition (SI) engine to achieve better efficiency and emissions. Hydrogen injection strategy affects the engine performance obviously. To optimize the combustion and emissions, a comparative study on the effects of the hydrogen injection strategy on the hydrogen mixture distribution, combustion and emission was investigated at a SI engine with gasoline intake port injection and four hydrogen injection strategies, hydrogen direct injection (HDI) with stratified hydrogen mixture distribution (SHMD), hydrogen intake port injection with premixed hydrogen mixture distribution (PHMD), split hydrogen direct injection (SHDI) with partially premixed hydrogen mixture distribution (PPHMD) and no hydrogen addition. Results showed that different hydrogen injection strategy formed different kinds of hydrogen mixture distribution (HMD). The ignition and combustion rate played an important role on engine efficiency. Since the SHDI could use two hydrogen injection to organize the HMD, the ignition and combustion rate with the PPHMD was the fastest. With the PPHMD, the brake thermal efficiency of the engine was the highest and the emissions were slight more than that with the PHMD. PHMD achieve the optimum emission performance by its homogeneous hydrogen. The engine combustion and emission performance can be optimized by adjusting the hydrogen injection strategy. 相似文献
9.
《International Journal of Hydrogen Energy》2022,47(84):35864-35876
Up to 90% hydrogen energy fraction was achieved in a hydrogen diesel dual-fuel direct injection (H2DDI) light-duty single-cylinder compression ignition engine. An automotive-size inline single-cylinder diesel engine was modified to install an additional hydrogen direct injector. The engine was operated at a constant speed of 2000 revolutions per minute and fixed combustion phasing of ?10 crank angle degrees before top dead centre (°CA bTDC) while evaluating the power output, efficiency, combustion and engine-out emissions. A parametric study was conducted at an intermediate load with 20–90% hydrogen energy fraction and 180-0 °CA bTDC injection timing. High indicated mean effective pressure (IMEP) of up to 943 kPa and 57.2% indicated efficiency was achieved at 90% hydrogen energy fraction, at the expense of NOx emissions. The hydrogen injection timing directly controls the mixture condition and combustion mode. Early hydrogen injection timings exhibited premixed combustion behaviour while late injection timings produced mixing-controlled combustion, with an intermediate point reached at 40 °CA bTDC hydrogen injection timing. At 90% hydrogen energy fraction, the earlier injection timing leads to higher IMEP/efficiency but the NOx increase is inevitable due to enhanced premixed combustion. To keep the NOx increase minimal and achieve the same combustion phasing of a diesel baseline, the 40 °CA bTDC hydrogen injection timing shows the best performance at which 85.9% CO2 reduction and 13.3% IMEP/efficiency increase are achieved. 相似文献
10.
Teng Su Changwei Ji Shuofeng Wang Lei Shi Jinxin Yang Xiaoyu Cong 《International Journal of Hydrogen Energy》2018,43(4):2443-2451
Rotary engine has flat chamber and longs for fuel with high flame speed and small quenching distance. Hydrogen has many excellent characteristics that are suitable for the rotary engine. In this paper, the performance of a rotary engine fueled with pure hydrogen at different excess air ratios was experimentally investigated. The investigation was carried out on a single-rotor hydrogen-fueled rotary engine equipped with port fuel injection system. An online electronic control module was used to govern the hydrogen injection duration and excess air ratio. In this study, the engine was operating at the idle speed of 3000 rpm and different excess air ratios varied from 0.993 to 1.283. The test results demonstrated that the fuel energy flow rate of the hydrogen rotary engine and engine stability were reduced with the increase of excess air ratio. When the excess air ratio increased from 0.993 to 1.283, the hydrogen energy flow rate was decreased from 14.91 to 11.55 MJ/h. Both the flame development and propagation periods were increased with excess air ratio. CO emission was negligible, but HC, CO2 and NOx emissions were still detected due to the evaporation and possible burning of the lubrication-used gasoline, and oxidation reaction of nitrogen of the intake air. 相似文献
11.
Huaiyu Wang Changwei Ji Cheng Shi Shuofeng Wang Jinxin Yang Yunshan Ge 《International Journal of Hydrogen Energy》2021,46(27):14790-14804
The application of hydrogen direct-injection enrichment improves the performance of gasoline Wankel rotary engine, and the hydrogen injection strategy has a significant impact on combustion, knock, and emissions. The Z160F Wankel rotary engine was used as the investigated compact engine, and the simulation model was developed using CONVERGE software. The combustion, knock and emissions characteristics of the engine were studied with the different mass flow of hydrogen injection, i.e., the trapezoid, wedge, slope, triangle and rectangle type of gas injection rate shape. In the numerical simulations, the in-cylinder pressure oscillations were monitored using monitoring points, and the knock index (KI) was used as an evaluation indicator. The study revealed that the gas injection rate shape significantly affected the mixture of hydrogen and air, thus impacting combustion, knock and emissions. When the injection rate shape was rectangle, the flame speed was faster, the peak pressure in the cylinder was higher, and the corresponding crank angle was earlier, which led to higher pressure oscillations in the cylinder and larger KI. Based on the rectangle injection rate shape, the KI decreased by 75.81%, 33.47%, 26.46% and 76.58% for trapezoid, wedge, slope, and triangle, respectively, and the indicated mean effective pressure increased by 15.68%, 5.07%, 0.56% and 14.98%, respectively. Due to the small difference in maximum temperature, which resulted in very little variation in nitrogen oxides for each injection rate shape, the total hydrocarbon emissions of the trapezoid and triangle injection rate shape was high due to the delayed combustion phase. This paper provides a solution for direct hydrogen injection to improve the combustion, knock and emissions behavior of the rotary engine. 相似文献
12.
Yaodong Du Xiumin Yu Lin Liu Runzeng Li Xiongyinan Zuo Yao Sun 《International Journal of Hydrogen Energy》2017,42(12):8288-8298
The effects of exhaust gas recirculation (EGR) on combustion and emissions under different hydrogen ratios were studied based on an engine with a gasoline intake port injection and hydrogen direct injection. The peak cylinder pressure increases by 9.8% in the presence of a small amount of hydrogen. The heat release from combustion is more concentrated, and the engine torque can increase by 11% with a small amount of hydrogen addition. Nitrogen oxide (NOx) emissions can be reduced by EGR dilution. Hydrogen addition offsets the blocking effect of EGR on combustion partially, therefore, hydrogen addition permits a higher original engine EGR rate, and yields a larger throttle opening, which improves the mechanical efficiency and decreases NOx emissions by 54.8% compared with the original engine. The effects of EGR on carbon monoxide (CO) and hydrocarbon (HC) emissions are not obvious and CO and HC emissions can be reduced sharply with hydrogen addition. CO, HC, and NOx emissions can be controlled at a lower level, engine output torque can be increased, and fuel consumption can be reduced significantly with the co-control of hydrogen addition and EGR in a hydrogen gasoline engine. 相似文献
13.
《International Journal of Hydrogen Energy》2019,44(21):11205-11218
The effects of hydrogen ratios on combustion and emission characteristics of gasoline engine were studied under different exhaust gas recirculation (EGR), ignition timing and ignition pressure. The test performed in a modified gasoline direct ignition engine at different hydrogen ratios of 0%, 5%, 10% and 25%. In addition, the EGR rate set to 0%, 5%, 10% and 20% to study the combustion and emission characteristics. Addition to the different hydrogen fractions, 5% of TiO2 is added to increase the combustion characteristics with reduced emission. Regarding the results of the current study, the engine torque increases by 15% due to the addition of hydrogen in gasoline, while mechanical efficiency is improved by achieving a large throttle opening. At the same time, NOx emission decreased by 62% compared to the unmodified engine due to the influence of EGR, hydrogen ratio and high oxygen concentration TiO2. Moreover, the emission of CO and HC also reduced due to the influence of hydrogen fuel. Additionally, few more tests are taken to monitor the effect of the injection pressure for the hydrogen fuel. Higher injection reports higher effective thermal efficiency at 4 MPa and lower NOx. Reasonable injection pressure results in shorten flame development period. 相似文献
14.
《International Journal of Hydrogen Energy》2019,44(39):22223-22230
The port-injection-type hydrogen engine is advantaged in that hydrogen gas is injected into the intake pipe through a low-pressure fuel injector, and the mixing period with air is sufficient to produce uniform mixing, improving the thermal efficiency. A drawback is that the flame backfires in the intake manifold, reducing the engine output because the amount of intake air is reduced, owing to the large volume of hydrogen. Here, the backfire mechanism as a part of the development of full-load output capability is investigated, and a 2.4-liter reciprocating gasoline engine is modified to a hydrogen engine with a hydrogen supply system. To secure the stability and output performance of the hydrogen engine, the excess air ratio was controlled with a universal engine control unit.The torque, excess air ratio, hydrogen fuel, and intake air flow rate changes in time were compared under low- and high-engine speed conditions with a wide-open throttle. The excess air ratio depends on the change in the fuel amount when the throttle is completely opened, and excess air ratio increase leads to fuel/air-mixture dilution by the surplus air in the cylinder. As the engine speed increases, the maximum torque decreases because the excess air ratio continues to increase due to the occurrence of the backfire. The exhaust gas temperature also increases, except at an engine speed of 6000 rpm. Furthermore, the increase in exhaust gas temperature affects the backfire occurrence. At 2000 rpm, under low-speed and wide-open throttle conditions, backfire first occurs in the No. 4 cylinder because the mixture is heated by the relatively high port temperature. In contrast, at 6000 rpm, under high-speed and wide-open throttle conditions, the backfire starts at the No. 2 cylinder first because of a higher exhaust gas temperature, resulting in a lower excess air ratio in cylinders 2 and 3, located at the center of the engine. 相似文献
15.
《International Journal of Hydrogen Energy》2020,45(15):8067-8081
This study investigates the characterization of the hydroxy-diesel fueled compression ignition engine under dual fuel (DF) mode on a stationary modified engine. Hydroxy gas (HHO) is supplied along with diesel at three different flow rates of 0.25, 0.50, and 0.75 lpm. A significant reduction in emission parameters was obtained in carbon monoxide, unburnt hydrocarbon and smoke emission as ~58%, ~60%, and ~49%, respectively under the DF mode (at 0.75 lpm HHO and 10 kg load). However, a slight increment in nitrogen oxides (NOX) emission is observed due to the O2 contents in HHO gas. It increases the reaction temperature and results in increasing the NOX emission. The brake thermal efficiency and brake specific energy consumption also improved and found to be ~6.5% and ~6% at the optimized condition. Combustion analysis shows the rate of pressure rise increased due to quicker combustion and decreased combustion duration. A numerical simulation has been performed to optimize the engine load and HHO flow rate using the Hybrid Entropy-VIKOR technique. In addition, a good agreement has been found between simulation and experimental values for performance and emission parameters. The results can be further improved by optimizing the engine operating parameters, i.e., injection pressure, compression ratio, and injection timing in the near future. Overall it can be concluded the HHO can be considered as a prominent alternative fuel for the CI engine with increased efficiency and lower emissions. 相似文献
16.
分析了影响电控顺序喷射压缩天然气(CNG)发动机最佳过量空气系数(Фat)的主要因素。建立了CNG发动机试验台架,进行了过量空气系数对发动机经济性、动力性和排放性影响的试验。试验结果表明:过量空气系数对于CNG发动机经济性的影响非常明显,经济性最好时的过量空气系数大于NOx排放量最大时对应的过量空气系数,HC排放随着过量空气系数增大而增大,CO排放在过量空气系数为1.2到1.4之间时急剧下降,排气温度随过量空气系数增大而下降。该发动机的过量空气系数在1.5左右时其综合排放性能和经济性最佳。 相似文献
17.
Ammonia is a good hydrogen carrier and can be well combined with hydrogen for combustion. The combustion performance of the mixtures of ammonia and hydrogen in a medium-speed marine diesel engine was investigated theoretically. The HCCI combustion mode was selected for reducing thermal-NOx production. The start fire characteristic of the NH3–H2 mixtures was studied under different equivalence ratio, hydrogen-doped ratio, and intake air temperature and pressure. Then, the combustion performance of the NH3–H2 mixtures (doping 30% hydrogen) was analyzed at a typical operation condition of engine. The addition hydrogen improved the laminar flame velocity of ammonia, and affected the NOx emission. For the medium-speed marine engine fueled with NH3–H2, reducing combustion temperature, introducing EGR and combining with post-treatment technology would be a feasible scheme to reduce NOx emission. 相似文献
18.
过量空气系数是影响小型通用汽油机动力、经济、排放性能和运转稳定性的关键因素之一.从排放性能出发,不同排量的小型四冲程汽油机对过量空气系数的要求是不一样的.以排放控制为重点,并且能兼顾其他性能的过量空气系数与小型四冲程通用汽油机的优化匹配是本文研究的重点.通过试验研究和理论分析,探讨不同排量的小型四冲程通用汽油机的排放控制策略. 相似文献
19.
《International Journal of Hydrogen Energy》2022,47(39):17468-17478
The hydrogen-fueled Wanke rotary engine is a promising power system that has both high power and eco-friendly properties. This work investigated the effect of ignition timing on a dual-spark plugs synchronous-ignition hydrogen-fueled Wankel rotary engine under low speed, part load and lean combustion. The results show that with delaying the ignition timing, CA0-10 is shortened first and then lengthened and CA10-90 is consistently shortened. When the CA50 is located between 35 and 40°CA ATDC, the maximum brake torque can be realized. Besides, the selection of ignition timing needs to consider the “trade-off” relationship between the combustion phase and corresponding in-cylinder pressure. The maximum brake torque ignition timing is between 5 and 10°CA ATDC. And there is also a “trade-off” relationship between stability and thermal load when ignition timing is selected. In addition, HC and NO emissions will not become the problem limiting the power performance of hydrogen-fueled Wankel rotary engine under this operating condition. 相似文献
20.
《International Journal of Hydrogen Energy》2023,48(51):19700-19712
In this study, a three-dimensional numerical model of a hydrogen direct-injection engine was established, and the combustion model was verified by experimental data. The influence of the injection timing and nozzle diameter on ultra-lean combustion was evaluated. The results suggest that, with the delay in the injection timing, the mixture concentration near the spark plug and combustion speed gradually increase. The maximum thermal efficiency increased from 47.44% to 49.87%. The combustion duration and ignition lag are shortened from 19.15°CA to 11.15°CA to 16.13°CA and 5.92°CA, respectively. As the nozzle diameter increased, the injection duration was shortened, and the mixture distribution area became more concentrated. Furthermore, under ultra-lean combustion, the combustion rate is more sensitive to the distribution of the mixture. Appropriately increasing the equivalence ratio near the spark plug can significantly shorten the ignition lag and combustion duration and obtain a higher thermal efficiency. 相似文献