首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose targets, based on real world data, necessary to design a financially viable microbial electrolysis cell (MEC) for the treatment of domestic wastewater. By reducing the cost of the anode and current collecting materials by 90%, a viable organic loading rate would be between 800 and 1,400g-COD/m3/d (2–3A/m2). The anode and current collector materials account for 94% of the total material costs; consequently, cost savings in any other material are moot. If the bioanode can be reused after 20 years, further, significant savings could be achieved. To develop targets we used real world data, for the first time, to evaluate the financial viability of MECs against the current predominant method of wastewater treatment: activated sludge. We modelled net present values for eight potential scenarios and the performances required for MECs to break-even.  相似文献   

2.
The inefficient extracellular electron transfer (EET) is detrimental to power generation and waste degradation in microbial fuel cells (MFCs). Herein, we report a self-supporting anode for MFCs prepared by graphitization of steamed bread slices followed by in-situ polymerization to fabricate polyaniline@N-doped macroporous carbon foam (PANI@NMCF). The natural nitrogen-containing wheat flour was fermented and carbonized to form NMCF with a high specific surface area of 818.1 m2 g?1. After the NMCF surface modified by PANI, the enhanced hydrophilicity and conductivity of the PANI@NMCF anode would facilitate microbial adhesion, biofilm formation, and electron transfer. The surface improvements enhance the EET process for high-performance MFCs, including a short startup time of 21.7 h, high maximum output power density of 1160 ± 17 mW m?2, and decolourisation efficiency of 88.6 ± 1.2% for 36 h. The chemical oxygen demand removal efficiency was about 84.6 ± 1.1% at end of the operating cycles. This work provides a good foundation for our future development of carbon-based electrode materials for energy conversion and storage devices.  相似文献   

3.
In this study, highly active and stable CeO2, ZrO2, and Zr(1-x)Ce(x)O2-supported Co catalysts were prepared using the co-precipitation method for the high-temperature water gas shift reaction to produce hydrogen from waste-derived synthesis gas. The physicochemical properties of the catalysts were investigated by carrying out Brunauer-Emmet-Teller, X-ray diffraction, CO-chemisorption, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and H2-temperature-programmed reduction measurements. With an increase in the ZrO2 content, the surface area and reducibility of the catalysts increased, while the interaction between Co and the support and the dispersion of Co deteriorated. The Co–Zr0.4Ce0·6O2 and Co–Zr0.6Ce0·4O2 catalysts showed higher oxygen storage capacity than that of the others because of the distortion of the CeO2 structure due to the substitution of Ce4+ by Zr4+. The Co–Zr0.6Ce0·4O2 catalyst with high reducibility and oxygen storage capacity exhibited the best catalytic performance and stability among all the catalysts investigated in this study.  相似文献   

4.
Carbon nanostructure materials are becoming of considerable commercial importance, with interest growing rapidly over the decade since the discovery of carbon nanofibers. In this study, a new novel method is introduced to synthesize the carbon nanofibers by gas-phase, where a single-stage microwave-assisted chemical vapour deposition approach is used with ferrocene as a catalyst and acetylene and hydrogen as precursor gases. Hydrogen flow rate plays a significant role in the formation of carbon nanofibers, as being the carrier and reactant gas in the floating catalyst method. The effect of process parameters such as microwave power, radiation time and gas ratio of C2H2/H2 was investigated statistically. The carbon nanofibers were characterized using scanning and transmission electron microscopy and thermogravimetric analysis. The analysis revealed that the optimized conditions for carbon nanofibers production were microwave power (1000 W), radiation time (35 min) and acetylene/hydrogen ratio (0.8). The field emission scanning electron microscope and transmission electron microscope analyses revealed that the vertical alignment of carbon nanofibers has tens of microns long with a uniform diameter ranging from 115 to 131 nm. High purity of 93% and a high yield of 12 g of CNFs were obtained. These outcomes indicate that identifying the optimal values for process parameters is important for synthesizing high quality and high CNF yield.  相似文献   

5.
The production of hydrogen through water electrolysis is a promising pathway to decarbonize the energy sector. This paper presents a techno-economic model of electrolysis plants based on multiple states of operation: production, hot standby and idle. The model enables the calculation of the optimal hourly dispatch of electrolyzers to produce hydrogen for different end uses. This model has been tested with real data from an existing installation and compared with a simpler electrolyzer model that is based on two states. The results indicate that an operational strategy that considers the multi-state model leads to a decrease in final hydrogen production costs. These reduced costs will benefit businesses, especially while electrolysis plants grow in size to accommodate further increases in demand.  相似文献   

6.
The metal organic frameworks (MOFs) supported Pd catalysts for H2 generation from formic acid (FA) were synthesized in this work, via a facile excessive impregnation-low temperature reduction approach. Among the synthetic catalysts, 10% Pd/MOF-Cr (18) displayed a remarkable performance for catalyzing FA dehydrogenation in additive-free aqueous solution, and the corresponding TOFmid achieved 537.8 h?1 at 323 K. Furthermore, the bimetallic Ni–Pd alloy catalysts were prepared by the introduction of Ni in the subsequent work. Fortunately, 10% Ni0.4Pd0.6/MOF-Cr was found to be a highly active and fairly durable catalyst, exhibiting a TOFmid as high as 737.9 h?1 at 323 K with almost 100% XFA (final) and SH2, and remained 94% of its original activity in the third cyclic catalysis. Meanwhile, Ni was discovered to be indispensable in increasing the electron density of Pd, downsizing the immobilized metal particles and inhibiting the agglomeration of the loaded nanoparticles.  相似文献   

7.
Refueling costs account for much of the fuel cost for light-duty hydrogen fuel-cell electric vehicles. We estimate cost savings for hydrogen dispensing if metal hydride (MH) storage tanks are used on board instead of 700-bar tanks. We consider a low-temperature, low-enthalpy scenario and a high-temperature, high-enthalpy scenario to bracket the design space. The refueling costs are insensitive to most uncertainties. Uncertainties associated with the cooling duty, coolant pump pressure, heat exchanger (HX) fan, and HX operating time have little effect on cost. The largest sensitivities are to tank pressure and station labor. The cost of a full-service attendant, if the refueling interconnect were to prevent self-service, is the single largest cost uncertainty. MH scenarios achieve $0.71–$0.75/kg-H2 savings by reducing compressor costs without incurring the cryogenics costs associated with cold-storage alternatives. Practical refueling station considerations are likely to affect the choice of the MH and tank design.  相似文献   

8.
Hydrogen (H2) is a renewable, abundant, and nonpolluting source of energy. Photosynthetic organisms capture sunlight very efficiently and convert it into organic molecules. Cyanobacteria produce H2 by breaking down organic compounds and water. In this study, biological H2 was produced from various strains of cyanobacteria. Moreover, H2 accumulation by Synechocystis sp. PCC 6803 was as high as 0.037 μmol/mg Chl/h within 120 h in the dark. The wild-type, filamentous, non-heterocystous cyanobacterium Desertifilum sp. IPPAS B-1220 was found to produce a maximum of 0.229 μmol/mg Chl/h in the gas phase within 166 h in the light, which was on par with the maximum yield reported in the literature. DCMU at 10 μM increased H2 production by Desertifilum sp. IPPAS B-1220 by 1.5-fold to 0.348 μmol H2/mg Chl/h. This is the first report on the capability of Desertifilum cyanobacterium to produce H2.  相似文献   

9.
The need for a rapid transformation to low-carbon economies has rekindled hydrogen as a promising energy carrier. Yet, the full range of environmental consequences of large-scale hydrogen production remains unclear. Here, prospective life cycle analysis is used to compare different options to produce 500 Mt/yr of hydrogen, including scenarios that consider likely changes to future supply chains. The resulting environmental and human health impacts of such production levels are further put into context with the Planetary Boundaries framework, known human health burdens, the impacts of the world economy, and the externality-priced production costs that embody the environmental impact. The results indicate that climate change impacts of projected production levels are 3.3–5.4 times higher than the allocated planetary boundary, with only green hydrogen from wind energy staying below the boundary. Human health impacts and other environmental impacts are less severe in comparison but metal depletion and ecotoxicity impacts of green hydrogen deserve further attention. Priced-in environmental damages increase the cost most strongly for blue hydrogen (from ~2 to ~5 USD/kg hydrogen), while such true costs drop most strongly for green hydrogen from solar photovoltaic (from ~7 to ~3 USD/kg hydrogen) when applying prospective life cycle analysis. This perspective helps to evaluate potentially unintended consequences and contributes to the debate about blue and green hydrogen.  相似文献   

10.
Although various pretreatment methods are employed to promote sludge hydrolysis and thereby promoting methane production in the subsequent microbial electrolysis cell assisted anaerobic digestion (MEC-AD) system, the questions arise are, “which pretreatment method on waste activated sludge (WAS) maximises the sludge hydrolysis and what is the optimal applied voltage on anaerobic digestion (AD) to stimulates the direct interspecies electron transfer (DIET) performance and thereby accelerating the methane production fed with pretreated WAS?” was still unanswered. Herein, firstly, a series of pretreatment methods to hydrolyse and mineralise the organic matter of WAS was performed to evaluate solubilization efficiency and thereafter, the influence of different applied voltages (0.3 V, 0.6 V, and 0.9 V) on coupled MEC-AD reactors fed with pretreated WAS was investigated to apprehend the DIET promotion for methane production. The results indicated that in MEC-AD reactors, the methane yield increased by 27.2%, 44.8%, and 37.3% when the applied voltages were 0.3 V, 0.6 V, and 0.9 V, respectively. Therefore, the alkaline-thermal pretreatment (ATP) enhanced the sludge hydrolysis in WAS, followed by an applied voltage of 0.6 V in the MEC-AD reactor fed with pretreated WAS, enhanced methane production under DIET stimulation induced by the increased abundance of electroactive microorganisms (EAM) and the advanced electron transfer. Besides, the energy balance estimation validates that with an applied voltage of 0.6 V in MEC-AD could achieve higher net energy input.  相似文献   

11.
Hydrogen has attracted much attention as a next-generation energy resource. Among various technologies, one of the promising approaches for hydrogen production is the use of the reaction between Si and water, which does not require any heat, electricity, and light energy as an input. Notwithstanding the usefulness of Si as a prospective raw material of hydrogen production, the manufacturing process of Si requires a significant amount of energy. Therefore, as an alternative to pure Si, this study used a wasted Si sludge, generated though the manufacturing process of Si wafer, for the direct reuse. Thus, the Si-water reaction for the hydrogen generation was investigated in comparison with pure Si and Si sludge by employing X-ray absorption near edge structure (XANES) to evaluate the feasibility of hydrogen production with the use of Si sludge and to identify the influence of impurities contained in Si sludge. As a result, hydrogen was not produced with the use of Si sludge because of containing Al compound as the impurity. Through the XANES analysis, the formation of SiO(OH)2 was found as core-shell structure, which potentially would hinder the hydrogen generation.  相似文献   

12.
The performance analysis of a novel multi-generation (MG) system that is developed for electricity, cooling, hot water and hydrogen production is presented in this study. MG systems in literature are predominantly built on a gas cycle, integrated with other thermodynamic cycles. The aim of this study is to achieve better thermodynamic (energy and exergy) performance using a MG system (without a gas cycle) that produces hydrogen. A proton exchange membrane (PEM) utilizes some of the electricity generated by the MG system to produce hydrogen. Two Rankine cycles with regeneration and reheat principles are used in the MG configuration. Double effect and single effect absorption cycles are also used to produce cooling. The electricity, hot water, cooling effect, and hydrogen production from the multi-generation are 1027 kW, 188.5 kW, 11.23 kg/s and 0.9785 kg/h respectively. An overall energy and exergy efficiency of 71.6% and 24.5% respectively is achieved considering the solar parabolic trough collector (PTC) input and this can increase to 93.3% and 31.9% if the input source is 100% efficient. The greenhouse gas emission reduction of this MG system is also analyzed.  相似文献   

13.
Artificial Neural Networks (ANN) have been widely used by scientists in a variety of energy modes (biomass, wind, solar, geothermal, and hydroelectric). This review highlights the assistance of ANN for researchers in the quest for discovering more advanced materials/processes for efficient hydrogen production (HP). The review is divided into two parts in this context. The first section briefly mentions, in terms of technologies, economy, energy consumption, and costs symmetrically outlined the advantages and disadvantages of various HP routes such as fossil fuel/biomass conversion, water electrolysis, microbial fermentation, and photocatalysis. Subsequently, ANN and ANN hybrid studies implemented in HP research were evaluated. Finally, statistics of hybrid studies with ANN are given, and future research proposals and hot research topics are briefly discussed. This research, which touches upon the types of ANNs applied to HP methods and their comparison with other modeling techniques, has an essential place in its field.  相似文献   

14.
A 10 kg alloy mass metal hydride reactor, with LaNi5 alloy was designed. Heat transfer enhacement in the reactor was achieved by including embedded cooling tubes and an external water jacket. Detailed parametric study has been carried to understand the performance of the system. The effect of both geometrical and operational parameters was studied in simulations. The optimized geometrical parameters were used for fabricating the reactor. Experimental studies were carried on the fabricated reactor. Absorption studies were carried out for different supply pressure and different cooling fluid temperatures. Storage capacity of 1.13 wt% was found in 1620 s at a supply pressure of 25 bar and with a flow rate of 20 LPM. Similarily, desorption studies were carried out for varying heat transfer fluid temperatures. Complete and fastest desorption was observed at 80 °C with the reaction completion time of 2700 s.  相似文献   

15.
To construct a system for the effective hydrogen production from food waste, the conditions of anaerobic digestion and biogas reforming have been investigated and optimized. The type of agitator and reactor shape affect the performance of anaerobic digestion reactors. Reactors with a cubical shape and hydrofoil agitator exhibit high performance due to the enhanced axial flow and turbulence as confirmed by simulation of computational fluid dynamics. The stability of an optimized anaerobic digestion reactor has been tested for 60 days. As a result, 84 L of biogas is produced from 1 kg of food waste. Reaction conditions, such as reaction temperature and steam/methane ratio, affect the biogas steam reforming reaction. The reactant conversions, product yields, and hydrogen production are influenced by reaction conditions. The optimized reaction conditions include a reaction temperature of 700 °C and H2O/CH4 ratio of 1.0. Under these conditions, hydrogen can be produced via steam reforming of biogas generated from a two-stage anaerobic digestion reactor for 25 h without significant deactivation and fluctuation.  相似文献   

16.
The objective of this study was to evaluate the effects of hydraulic retention time (HRT) (8–1 h) on H2 production from sugarcane juice (5000 mg COD L−1) in mesophilic (30 °C, AFBR-30) and thermophilic (55 °C, AFBR-55) anaerobic fluidized bed reactors (AFBRs). At HRTs of 8 and 1 h in AFBR-30, the H2 production rates were 60 and 116 mL H2 h−1 L−1, the hydrogen yields were 0.60 and 0.10 mol H2 mol−1 hexose, and the highest bacterial diversities were 2.47 and 2.34, respectively. In AFBR-55, the decrease in the HRT from 8 to 1 h increased the hydrogen production rate to 501 mL H2 h−1 L−1 at the HRT of 1 h. The maximum hydrogen yield of 1.52 mol H2 mol−1 hexose was observed at the HRT of 2 h and was associated with the lowest bacterial diversity (0.92) and highest bacterial dominance (0.52).  相似文献   

17.
Ammonia borane (NH3BH3, AB) has been considered as one of the most attractive candidates for chemical hydrogen-storage materials and chemical hydrogen generation materials. Development of low-cost and high-performance catalysts for hydrogen generation from AB is highly desirable, which is still a huge challenge. Hollow sphere CuCo2O4 promotes the catalytic hydrolysis of AB due to its unique hollow sphere shape and the synergistic effect of Co and Cu elements. In this study, a heterogeneous structured catalyst containing NiO and CuCo2O4 was developed by a simple and low-cost method in order to improve the catalytic performance of CuCo2O4. Initially, CuCo2O4 with hollow sphere structure was synthesized by hydrothermal method, and then NiO were deposited onto CuCo2O4 by impregnation-calcination method to form a heterogeneous structure. The CuCo2O4–NiO catalyst showed good catalytic activity for the hydrolysis of AB. The catalytic performance of CuCo2O4–NiO was then optimised by controlling the concentration of the impregnated salt solution, and the optimised catalytic performance was 1.42 times that of pure CuCo2O4 with a HER value of 870 mLH2gcat−1min−1. This low-cost CuCo2O4–NiO obtained by impregnation-calcination method is valuable for catalytic hydrogen production from AB.  相似文献   

18.
Applicability of multiwall carbon nanotubes (MWCNTs) decorated with palladium nanoparticles as sensitive layer in a resistive microsensor for identification of hydrogen isotopes, Deuterium (2H) and Protium (1H), has been demonstrated. Palladium nanoparticles were anchored on the MWCNTs surface via a chemical process involving micellization, from a precursor chloride solution, in high ultrasonic density field. Pd-MWCNTs are quasi-aligned between the interdigitated gold electrodes of a SiO2 substrate by drop casting and di-electrophoretic alignment in Tetrahydrofuran (THF) and Nafion solution. The morphostructural characterization of the sensitive material has been carried out through SEM, TEM and Raman spectroscopy and its gas sensing properties were evaluated using electrical measurements performed on a series of isotope concentrations (ranging from 0.1% up to 1%, and from 1% to 4%, value to which hydrogen becomes explosive) diluted in argon, to observe the evolution of the sensor sensibility. The two hydrogen isotopes have different behaviors related to the adsorption on the Pd-MWCNT, which is well observed in the resistance change. Therefore, the sensor based on Pd-MWCNTs could be a viable solution to be integrated in systems for hydrogen leakage detection.  相似文献   

19.
Municipal solid waste has been used for bio-methane production for many years. However, both methane and carbon dioxide that is produced during bio-methanization increases the greenhouse gas emissions; therefore, hydrogen production can be one of the alternatives for energy production from waste. Hydrogen production from the organic substance was studied in this study with the waste activated sludge from the municipal wastewater treatment. High rated activated sludge (HRAS) process was applied for the treatment to reduce energy consumption and enhance the organic composition of WAS. The highest COD removal (76%) occurred with the 12 g/L organic fraction of municipal solid waste (OFMSW) addition at a retention time of 120 min. The maximum hydrogen and methane yields for the WAS was 18.9 mL/g VS and 410 mL/g VS respectively. Total carbon emission per g VS of the substrate (OFMSW + waste activated sludge) was found as 0.087 mmol CO2 and 28.16 mmol CO2 for dark fermentation and bio-methanization respectively. These kinds of treatment technologies required for the wastewater treatment plantcompensate it some of the energy needs in a renewable source. In this way, the HRAS process decreases the energy requirement of wastewater treatment plant, and carbon-rich waste sludge enables green energy production via lower carbon emissions.  相似文献   

20.
A nanostructured NiSn alloy/multi-walled carbon nanotube (MWCNT) composite was successfully synthesized for highly reversible sodium and hydrogen ions storage by using an electrochemical deposition process on porous Cu foam. The surface morphology of the resulting NiSn alloy/MWCNT nanocomposite was characterized using a field-emission scanning electron microscope, indicating the formation of sphere-like NiSn alloy nanoparticles with an average size of 190 nm. On the other hand, X-ray diffraction analysis, energy dispersive and Fourier transform infrared spectroscopies were employed to determine the crystalline structure, elemental surface and chemical composition of the nanocomposite electrode. The initial sodium discharge capacity of the electrode was maximized at ∼550 mAh g−1 under the current density of 1000 mA g−1, and a high hydrogen discharge capacity of 5200 mAh g−1 was obtained at 1100 mA g−1 after 20 cycles. A comprehensive comparison between the sodium and hydrogen ions capacities in this study and those of the literature for different materials and structures was also performed. Accordingly, the resulting nanocomposite electrode with dual capacity may offer promising applications in both sodium-ion battery and hydrogen storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号