共查询到20条相似文献,搜索用时 0 毫秒
1.
Bo Xu Yiqiang Sun Zhiming Chen Shuying Zhao Xiaodong Yang Haijing Zhang Cuncheng Li 《International Journal of Hydrogen Energy》2018,43(45):20721-20726
Facile fabrication of high-performance catalyst based on low-cost metals for sustainable hydrogen evolution is still a matter of cardinal significance. However, synthetic approaches for electrocatalyst are usually complicated and the yields are often low. Herein, we report a one-step simple method for the large-scale synthesis of Co/Ni-MoO2 composite as efficient and stable hydrogen evolution reaction (HER) electrocatalyst to drive 10 mA cm?2 current density with a low overpotential of 103 mV in basic media. Co-MoO2 and Ni-MoO2 were also prepared using this method with overpotential of 137 and 130 mV, respectively, to gain the same current density. These results indicate that this facile synthesis approach is of great practical importance as it can be easily used for large-scale preparation of electrocatalysts in industry. 相似文献
2.
Zhuo Guo Tianshuai Sun Yahui Li Hailan Kang Yuhan Che Yan Zhang Jinlin Lu 《International Journal of Hydrogen Energy》2018,43(51):22905-22916
In this work, mesoporous WS2 with high surface area was prepared by hard template method. First, a one-step nanocasting generates metal precursor@mesoporous silica SBA-15 composites. A hydrothermal method is subsequently adopted to convert the precursors to sulfides in the confined nanochannels. After etching silica SBA-15, mesoporous layered metal sulfide crystals were obtained as the products. Then, we have put forward a new catalyst based on mesoporous WS2, RGO nanosheets and Pt nanoparticles as a highly efficient electrocatalyst for hydrogen evolution. The Pt/WG-2 nanostructure electrocatalyst in this report exhibits excellent performance with a small Tafel slope of 47 mV dec?1, long-term durability and an overpotential of 95 mV in 0.5 M H2SO4 for the hydrogen evolution reaction (HER). 相似文献
3.
《International Journal of Hydrogen Energy》2023,48(15):5783-5800
The mixed metal dichalcogenides combination of WS2–MoS2 was coated onto Cu substrate by electroless NiMoP plating technique and the electrocatalytic hydrogen evolution reaction (HER) performance was investigated. The enhanced structural, morphological parameters and boosted electrocatalytic performance of the various metal-metal molar ratio of WS2–MoS2 onto NiMoP plate were identified under variable operating conditions and it was successfully evaluated by various characterization techniques. The well-defined crystalline nature, phase, particle size, structure, elemental analysis and surface morphology of prepared coatings were analyzed by FESEM, XRD, AFM and EDS mapping. The electrochemical analysis was performed using open circuit potential (OCP) analysis, chronoamperometry (CA), electrochemical impedance spectroscopy (EIS), Tafel curves, linear sweep voltammetry (LSV), cyclic voltammetry (CV) and polarization studies to find the activity of prepared electrocatalyst towards electrochemical hydrogen evolution reactions. The performance of bare NiMoP and WS2–MoS2/NiMoP plates were compared and found that the HER activity of NiMoP can be reinforced by composite incorporation through the synergic effect arises with in the catalytic system, which improves surface roughness and enhances the magnitude of electrocatalyst toward HER. The achievement of enhanced catalytic performance of coatings was authenticate by the kinetic parameters such as decreases in Tafel slope (98 mV dec?1), enhanced exchange current densities (9.32 × 10?4 A cm?2), and a lower overpotential. The consistent performance and durability of the catalyst were also investigated. The enhanced electrocatalytic activity of WS2–MoS2/NiMoP coatings increased with respect to the surface-active sites associated with combination of mixed dichalcogenides and the synergic effect arises in between different components present in the coating system. This work envisages the progressive strategies for the economical exploration of a novel WS2–MoS2/NiMoP water splitting catalyst used for large scale H2 generation. The prepared WS2–MoS2/NiMoP embedded Cu substrate possess high catalytic activity due to its least overpotential of 101 mV at a benchmark current density of 10 mA cm?2, which demonstrated the sustainable, efficient and promising electrocatalytic property of prepared catalyst towards HER under alkaline conditions. 相似文献
4.
《International Journal of Hydrogen Energy》2019,44(2):965-976
In this study, conductive Ti3C2 MXenes were used as a promoter to accelerate charger transfer of MoS2, realizing highly efficient HER electrocatalysis. A facile hydrothermal strategy is demonstrated to be effective for in situ growth of MoS2 nanosheets vertically standing on planar Ti3C2 nanosheets to form hierarchical heterostructures. Beneficial from the opened layer structures and strong interfacial coupling effect, the resulting MoS2/Ti3C2 heterostructures achieve a giant enhancement in HER activity compared with pristine MoS2 nanosheets. More specifically, the catalytic current density induced by MoS2/Ti3C2 heterostructures at an overpotential of ∼400 mV is nearly 6.2 times as high as that of the pristine MoS2 nanosheets. This work uncovers that the Ti3C2 nanosheets are ideal candidates for construction of highly active electrocatalysts for water splitting. 相似文献
5.
《International Journal of Hydrogen Energy》2020,45(53):28800-28811
In this work, nitrogen doped carbon dots (NDCDs) and nitrogen doped carbon dots supported palladium nanoparticles composite (n-Pd@NDCDs) were synthesized through hydrothermal carbonization and thermolytic reduction using Morinda citrifolia (M. citrifolia) fruit and palladium chloride as carbon and Pd precursors, respectively. The synthesized materials viz., n-Pd@NDCDs and NDCDs were duly characterized by high resolution transmission electron microscopy (HR-TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The optical properties of NDCDs were studied by ultraviolet visible (UV–Vis), and fluorescence spectroscopy techniques. Further, the electrocatalytic hydrogen evolution reaction (HER) performance of n-Pd@NDCDs was evaluated by linear sweep voltammetry (LSV), Tafel, and electrochemical impedance spectroscopy (EIS) measurements in 0.5 M aqueous H2SO4. The onset potential of n-Pd@NDCDs was about −0.195 VRHE, which was lower than NDCDS (−0.392 VRHE) and bare glassy carbon (−0.603 VRHE). The calculated Tafel slope values of n-Pd@NDCDs were 135 and 141.8 mV/dec, from the voltammetric and EIS methods, respectively. Moreover, the n-Pd@NDCDs exhibited small overpotential of 0.291 V to attain a current density of 10 mA/cm2. The EIS studies revealed that the HER charge transfer resistance was dropped from 84.3 to 18.3 Ω/cm2 while increasing of potential, which revealed good conductivity and electrocatalytic activity of n-Pd@NDCDs. Thus the present work vouched for the candidature of n-Pd@NDCDs as an effective electrocatalyst for the HER in acidic medium. 相似文献
6.
《International Journal of Hydrogen Energy》2022,47(95):40349-40358
Hydrogen evolution reaction (HER) carried out from electrocatalysis of water splitting is playing a major role in the production of green and clean hydrogen. In this paper, we report on the synthesis of graphitic carbon nitride on nickel hydroxide (g-C3N4/Ni(OH)2) nanocomposites by a simple ultrasonication method. The characterizations include the XRD, Raman, FESEM and electrochemical studies to analyze the performance of the as developed material over hydrogen evolution reaction. The morphological analysis shows that the aggregated interconnected g-C3N4/Ni(OH)2 (GCN/NH) nanocomposites with an average particle size of ~20 nm. These GCN/NH nanocomposites exhibit the lowest overpotential of 341 mV at 10 mA/cm2 which is smaller than that of the pristine Ni(OH)2 nanosheets at 367 mV. Further, the Tafel slope for GCN/NH nanocomposites reveals a lower value of 131 mV/dec. As a result, g-C3N4 decorated sheet-like β-Ni(OH)2 exhibits the potential hydrogen evolution in alkaline KOH solution. Excitingly, the as developed hybrid β-Ni(OH)2 nanocomposites show superior electrocatalytic behaviour during the hydrogen evolution reaction and also improve the catalytic stability than pure nanosheets. From these observations, one can say that this g-C3N4/Ni(OH)2 nanocomposite electrocatalyst can play a splendid role in future energy technology. 相似文献
7.
Masih Darbandi Ehsan Narimani Pariya Yardani Sefidi Haleh Rasouli Mir Ghasem Hosseini 《International Journal of Hydrogen Energy》2021,46(5):3887-3897
Preparing the low-cost nanomaterials for electrocatalytic processes is still a big challenge. Mesoporous cobalt hydroxide and cobalt oxide nanoparticles were prepared through simple soft chemistry as high-performance materials for durable electrocatalyst for OER and supercapacitive applications. The synthesis method is used to prepare nanoring particles in neither emulsion nor template-directed method. The final nanoparticles display mesoporous hexagonal nanoring morphology. The physio-chemical properties of the as-synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and nitrogen adsorption-desorption techniques. The TEM characterizations prove that NPs retain the topotactical relationship in their structure during the conversion process. The BET measurements prove the mesoporous nature of the nanorings, having good specific surface area and pore volume. Finally, the electrochemical performance toward water splitting and supercapacitor applications were investigated by electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), and cyclic voltammetry (CV) techniques. The Co3O4 NPs exhibits better catalytic properties than Co(OH)2 NPs when applied as electrocatalyst in an alkaline medium for water splitting and supercapacitor measurements. The enhanced electrocatalytic performance attributed to the mesoporous structure along with high pore volume, which provides more active boundary sites for the electrochemical process, resulted in the enhanced exchange of the intermediates and more efficient electron transfer. This synthetic methodology, with the advantages of inexpensive/non-complicated experimental setup and high electrochemical performance, could shed light on the development of non-expensive electrocatalysts for clean energy production and storage. 相似文献
8.
《International Journal of Hydrogen Energy》2019,44(16):8099-8108
Water splitting to produce hydrogen and oxygen is considered as a feasible solution to solve the current energy crisis. It is highly desirable to develop inexpensive and efficient electrocatalyst for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this paper, nanostructured Ni-Co-Sn alloys were electrodeposited on copper foil and the excellent electrocatalytic performances for both HER and OER in alkaline media were achieved. The optimized Ni-Co-Sn electrode shows a low onset overpotential of −18 mV and a small Tafel slope of 63 mV/dec for the HER, comparable to many state-of-the-art non-precious metal HER catalysts. For the OER, it produces an overpotential of 270 mV (1.50 V vs. RHE) at current density of 10 mA/cm2, which is better than that of the commercial Ir/C catalyst. In addition to high electrocatalytic activities, it exhibits good stability for both HER and OER. This is the first report that Ni-Co-Sn is served as a cost-effective and highly efficient bifunctional catalyst for water splitting and it will be of great practical value. 相似文献
9.
《International Journal of Hydrogen Energy》2023,48(54):20577-20587
Developing high-efficiency electrocatalysts viable for pH-universal hydrogen evolution reaction (HER) has attracted great interest because hydrogen is a promising renewable energy carrier for replacing fossil fuels. Herein, we present a facile strategy for fabricating ultra-fine Ru nanoparticles (NPs) decorated V2O3 on the carbon cloth substrates as efficient and stable pH-universal catalysts for HER. Benefiting from the metallic property and electronic conductivity of V2O3 matrix, the optimized hybrid (Ru/V2O3-CC) exhibits excellent HER activities in a wide pH range, achieving lower overpotentials of 184, 219, and 221 mV at 100 mA cm−2 in 0.5 M H2SO4, 1.0 M KOH and 1.0 M phosphate-buffered saline, respectively. Moreover, the electrode remains superior stability with negligible degradation after 5000 cyclic voltammetry scanning whether in acidic, alkaline or neutral media. Experimental results, combined with theoretical calculations, demonstrate that the interaction between Ru NPs and the support V2O3 induces the local electronic density diversity, allowing optimization of the adsorption energy of Ru towards hydrogen intermediate H1, thus favoring the HER process. 相似文献
10.
Kewei Wang Jinshan Tan Zejia Lu Shuai Chen Xilin She Huawei Zhang Dongjiang Yang 《International Journal of Hydrogen Energy》2018,43(30):13939-13945
The preparation of hydrogen evolution reaction (HER) electrocatalyst with high catalytic performance is a huge challenge. In this work, we develop a MoP/Fe2P/RGO composite as a electrocatalyst for HER. The MoP/Fe2P/RGO exhibits excellent electrocatalytic performance with a Tafel slope and an onset overpotential of 51 mV/dec and 105 mV, respectively. To drive 10 mA/cm2, it only requires a small over-potential of 156 mV. The high electrocatalytic HER activity is mainly due to the synergistic effect of MoP and Fe2P. In addition, the introduction of RGO not only prevents particle aggregation and coalescence during high temperature phosphating, but also improves the conductivity of the catalyst. 相似文献
11.
《International Journal of Hydrogen Energy》2022,47(67):28894-28903
Evidence shows that embedding metal-based hybrid into carbon matrix is an up-and-coming method to improve the efficiency and decrease the cost of electrocatalysts. Herein, by using a metal-organic framework (MOF) with 4,4-bipyridine and 2,5-thiophenedicarboxylic acid as a precursor, a CoP/Co3S4 hybrid embedded into N, S, O-doped carbon sheets (CoP/Co3S4@NSOC) was constructed through pyrolysis and phosphorization processes. The lamellar morphology, hetero-atom doping, and graphite carbon were favorable for fast electron and mass transfer. Moreover, the strong intrinsic activities of CoP and Co3S4 promoted electrocatalytic performance. In the electrochemical experiments, CoP/Co3S4@NSOC showed the lowest overpotential of 132 mV@10 mA cm?2 for hydrogen evolution reaction (HER) among all the precursors. In addition, the electrocatalytic activity and structure of CoP/Co3S4@NSOC exhibited long-term stability over 60 h. The present work provides a feasible strategy for the construction of robust MOF-derived electrocatalysts. 相似文献
12.
《International Journal of Hydrogen Energy》2020,45(3):1697-1705
Highly efficient and durable non-noble metal-based hydrogen evolution electrocatalysts are critical to advance the production of hydrogen energy via alkaline water electrolysis. Herein, we prepared a novel TiO2@WS2 hybrid via a facile and scalable two-step hydrothermal strategy combined with selective etching. Benefited from acid-etched TiO2 nanobelts with rough surface as substrate, ultrathin WS2 nanosheets nucleated and vertically grew into few layers in the confined configuration with more exposed active edges. Furthermore, the partial incorporation of oxygen in WS2 inherited from the remaining O–W bonds of tungsten precursor enhanced the electrical conductivity of the hybrid. Therefore, TiO2@WS2 hybrid was proved to be efficient and durable electrocatalyst for hydrogen evolution in alkaline medium. Upon optimal conditions, the hybrid only required a small onset overpotential of 95 mV and a low overpotential of 142 mV at 10 mA cm−2, superior to pristine WS2 and TiO2. In addition, better cycling stability during the alkaline HER process was also obtained, indicating its capability in future practical application. The synthesis strategy presents a cost-effective approach to produce efficient WS2-based HER electrocatalyst for electrochemical water splitting. 相似文献
13.
《International Journal of Hydrogen Energy》2022,47(23):11739-11749
Development of electrocatalytic hydrogen production technology is the key to solving environmental and energy problems. Two-dimensional material Mo2TiC2Tx (Tx = –OH, –F) has shown great potential in electrocatalytic hydrogen evolution because of its excellent conductivity and hydrophilicity. However, due to the lack of sufficient active sites of Mo2TiC2Tx itself, its practical applications in electrocatalytic hydrogen evolution are limited. In this work, a highly-efficient hydrogen evolution electrocatalyst, namely Pd@MoS2/Mo2TiC2Tx, is prepared through a simple pyrolysis method. In such a composite, the MoS2 nanoflowers hybridized with the ammonia-treated Mo2TiC2Tx (MoS2/Mo2TiC2Tx) are used as a substrate for loading a small number of Pd nanoparticles (4.27 at.%). Notably, the introduction of Pd nanoparticles into MoS2/Mo2TiC2Tx provides abundant active sites for the hydrogen evolution reaction, improves the conductivity of the electrocatalyst, speeds up the adsorption and desorption of hydrogen, and induces a synergistic effect with the MoS2. As a result, the Pd@MoS2/Mo2TiC2Tx catalyst exhibits excellent electrocatalytic performance and remarkable stability in both acidic and alkaline media. In a 0.5 mol/L H2SO4 electrolyte, the overpotential of Pd@MoS2/Mo2TiC2Tx was 92 mV with a Tafel slope of 60 mV/dec at a current density of 10 mA/cm2. Meanwhile, the catalyst displayed an overpotential of 100 mV associated with a Tafel slope of 80 mV/dec at the current density of 10 mA/cm2 in a 1 mol/L KOH electrolyte. This work shows the great potential of using Mo2TiC2Tx-based material in the field of electrocatalysis. 相似文献
14.
《International Journal of Hydrogen Energy》2022,47(95):40340-40348
The enhancement in intrinsic catalytic activity and material conductivity of an electrocatalyst can leads to promoting HER activity. Herein, a successful nitrogenation of CoS2 (N–CoS2) catalyst has been investigated through the facile hydrothermal process followed by N2 annealing treatment. An optimized N–CoS2 catalyst reveals an outstanding hydrogen evolution reaction (HER) performance in alkaline as well as acidic electrolyte media, exhibiting an infinitesimal overpotential of ?0.137 and ?0.097 V at a current density of ?10 mA/cm2 (?0.309 and ?0.275 V at ?300 mA/cm2), corresponding respectively, with a modest Tafel slope of 117 and 101 mV/dec. Moreover, a static voltage response was observed at low and high current rates (?10 to ?100 mA/cm2) along with an excellent endurance up to 50 h even at ?100 mA/cm2. The excellent catalytic HER performance is ascribed to improved electronic conductivity and enhanced electrochemically active sites, which is aroused from the synergy and mutual interaction between heteroatoms that might have varied the surface chemistry of an active catalyst. 相似文献
15.
《International Journal of Hydrogen Energy》2022,47(1):181-196
A facile three-step approach for tubular CoP preparation and its catalytic activity for HER and OER are reported. The CoP microtubes show superior HER performance in a wide pH range with low overpotentials of 91, 101 and 113 mV at 10 mA cm?2 in 0.5 M H2SO4, 1 M KOH and 1 M PBS, respectively. Additionally, it also depicts superior OER performance with an overpotential of 300 mV at 10 mA cm?2, which is lower than reported precious metal oxides. The improved electrocatalytic performance of tubular CoP is likely attributed to the porous tube-like structural features, which not only afford rich exposed active sites, but also accelerate the charge or mass transfer efficiency, and thus efficiently promote the HER performance. The synthesis of tubular CoP confirms the importance of morphology features and provides a new insight to rationally design and synthesize highly effective non-noble metal phosphide-based pH-universal electrocatalysts for HER. 相似文献
16.
《International Journal of Hydrogen Energy》2019,44(12):5983-5989
The development of bifunctional catalysts that can be applied to both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is widely regarded as a key factor in the production of sustainable hydrogen fuel by electrochemical water splitting. In this work, we present a high-performance electrocatalyst based on nickel-cobalt metal-organic frameworks for overall water splitting. The as-obtained catalyst shows low overpotential to reaches the current density of 10 mA cm−2 with 249 mV for OER and 143 mV for HER in alkaline media, respectively. More importantly, when the electrolyzer was assembled with the as-prepared catalyst as anode and cathode simultaneously, it demonstrates excellent activity just applies a potential of 1.68 V to achieve 10 mA cm−2 current density for overall water splitting. 相似文献
17.
《International Journal of Hydrogen Energy》2023,48(44):16715-16724
Green hydrogen production from electrochemical water splitting currently suffers from the key issues of high energy consumption and cost. Herein, we demonstrated the synthesis of highly efficient and stable clustered CoP nanowires electrocatalysts on nickel foam. Moreover, an ion exchange strategy was proposed to precisely control the doping content of iron to further modify the intrinsic electrochemical activity of CoP nanowires. The introduction of iron effectively alters the surface atomic configuration and electronic structure of CoP and increases the active sites, thus accelerating the overall reaction rate and enhancing the catalytic performance. It has been demonstrated that the CoFeP-30-30/NF electrode exhibits platinum-like catalytic activity with only an overpotential of 29.8 mV at 10 mA·cm−2 and outstanding stability toward hydrogen evolution reaction. The synthetic strategy of CoFeP/NF electrode proposed in this work will significantly promote the development of highly efficient transition metal phosphides electrocatalysts with lower overpotential and better stability. 相似文献
18.
《International Journal of Hydrogen Energy》2021,46(64):32536-32545
2D transition metal carbides, nitrides and carbonitrides, namely the MXenes, attract more and more attentions due to their unique properties. Here, we report a simple one-step molten salt etching method to prepare Co modified MXene hybrid (Ti3C2Tx:Co) by the reaction of Ti3AlC2 with Lewis acid CoCl2 at 750 °C. Most of Co atoms aggregates in the interlayered space of Ti3C2Tx. Benefitting from the improved electron charge transfer efficiency and increased active sites, the sulfuric acid treated Ti3C2Tx:Co-12h hybrid exhibits excellent electrocatalytical activity for hydrogen evolution reaction in alkaline media, delivering a current density of 10 mA cm−2 at an overpotential of 103.6 mV, which is lower than most noble metal free MXene based electrocatalysts. The results illustrate that the proposed method is very facile and useful to incorporate mid-to-late transition metals into the MXene phase to prepare MXene based HER electrocatalysts. 相似文献
19.
B.N. Darshan Abdul Kareem T. Maiyalagan V. Edwin Geo 《International Journal of Hydrogen Energy》2021,46(27):13952-13959
Designing an efficient and stable electrocatalyst made of earth abundant elements to take over expensive noble metal based for Hydrogen Evolution Reaction (HER) have been focused. Cobalt disulfide-molybdenum disulfide nanocomposite supported by nitrogen doped reduced graphene oxide and multiwalled carbon nanotubes (CoS2/MoS2@NrGO-MWCNT) is reported as an efficient electrocatalyst for HER. CoS2/MoS2@N-rGO-MWCNT and ternary hybrids composed of CoS2, MoS2 and N-rGO/MWCNT have been investigated. The catalysts were prepared by facile hydrothermal method, and the optimal doping ratio referred to date cobalt to molybdenum as 2:1 was chosen. It is found that co-existence of CoS2, MoS2 brings abundant active sites and incorporation of MWCNT offered stability. Good dispersion of CoS2 nanoparticles on graphene and MoS2 sheets is observed. Additionally nitrogen doping on rGO sheets has been carried out to boost up the electronegativity of the catalyst as a support to enhance the catalytic activity of CoS2/MoS2 for refine structure and better electrical conductance. Precisely, CoS2/MoS2@N-rGO-MWCNT exhibited smaller tafel slope 73 mV dec?1 at overpotential 281 mV for current density 10 mA cm?2 and the substantial stability of 14 h is recorded in 0.5 M H2SO4 medium, results suggest that catalyst is viable alternate for HER. 相似文献
20.
《International Journal of Hydrogen Energy》2020,45(1):544-552
Exploration of noble-metal-free, highly-efficient and durable catalysts for Hydrogen evolution reaction (HER) remains a challenge. In this work, the development of carbon-coated cobalt-molybdenum-phosphide nanosheets supported on carbon cloth (Co-Mo-P@C) is successfully demonstrated. To obtain a better electrocatalystic performance, the different amount of glucose was added into the reaction system during hydrothermal process. Benefiting from the 2D structure, high electrical conductivity and sufficient active sites, the Co-Mo-P@C contained 0.5 mmol glucose exhibits relatively good catalytic activity for HER with low over poentials at −96 mV and −162 mV @ 10 mA cm−2 in acidic and alkaline medias respectively and the Tafel slope of 52.9 mV dec−1 and 34.3 mV dec−1. Additionally, the catalyst also shows good durability in the both electrolytes. 相似文献